
0

0

0

0

8

8

4

4

5

5

9

11 10

6 12

0

0

0

0

2 3 4 5

Results

Otter: An OMPT Tool for Tracing and 
Visualising OpenMP Tasks

● Single time-steps observed in default and enclave tasking modes shown above.
● Default (left): cells updated sequentially in parallel-for blocks during synchronised domain 

traversal tasks.
● Enclave (right): synchronised tasks spawn unsynchronised non-critical enclave tasks which 

may be overlapped with later communication phase (not shown).
● Both time-steps show 81 parallel-for regions corresponding to cells of 9x9 grid, with graph 

structure determined by tasking mode.
● Otter illustrates inefficiencies of LLVM OpenMP implementation observed in [1] – native 

scheduler not able to take advantage of concurrency exposed by enclave tasks.

◀ Single times-steps observed 
by Otter for default (left) and 
enclave (right) versions of the 
solver.

Introduction
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Solution Overview
● Otter: event-driven, callback-based tool for tracing and visualising structure of parallel-for- & 

task-based OpenMP programs.
● OpenMP Tools (OMPT) interface is a non-invasive, portable alternative to direct 

instrumentation.
● Otter traces runtime event data from OMPT interface in OTF2 format.
● Trace data transformed into a directed acyclic graph (DAG) visualising parallel-for- and task-

based structure.

#pragma omp parallel
{
  #pragma omp single nowait
  #pragma omp taskloop nogroup
  for (int j=0; j<4; j++)
  {
  // do work
  }
}

Region Symbols

parallel

initial task

explicit task

implicit barrier

taskwait

taskgroup

master

taskloop

single

for-loop

int fib(int n) {
  int i, j;
  if (n<2) return n;
  #pragma omp task
    i = fib(n-1);
  #pragma omp task
    j = fib(n-2);
  #pragma omp taskwait
  return i+j;
}

▲ OpenMP constructs are represented as nodes. Edges represent execution flow and task creation & 
synchronisation.

▶ Propagation of seismic waves around Mount 
Zugspitze, Germany, simulated with ExaHyPE. 
Reproduced from [2].

● ExaHyPE: engine for solving first-order hyperbolic PDEs.
● Uses adaptive spatial grids of Peano-4 to serialise domain cells along space-filling curve (SFC). 

May spawn OpenMP task on each cell.
● Case study target: Solver from [1], using default and enclave task generation modes.
● In a single time-step threads traverse partitions of the SFC to update the cells of the grid. 
● Default: per-thread grid traversals mapped onto a set of synchronised OpenMP tasks.
● Enclave: non-critical cell updates packaged in enclave tasks to allow overlap with 

communication & reduce time-to-solution.

Limitations & Future Work

● Understanding performance of task-based code difficult due to additional concurrency of tasks 
& myriad scheduling possibilities.

● Thread-centric analysis tools obscure underlying task-graph structure by showing particular 
scheduling of tasks onto threads.

● Opportunity: portable performance analysis tool for measuring & visualising task graph 
structure of task-based code.

● Case study reveals the task-based structure of a PDE solver produced with ExaHyPE & illustrates 
performance bottlenecks identified in LLVM’s OpenMP implementation.

Case Study: Visualising the Task Graph of a Task-Based PDE Solver from ExaHyPE
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▲ Tasking inefficiencies observed in LLVM OpenMP implementation for ill-balanced (left) and well-
balanced (right) loads. Native task limit and greedy consumption of ready tasks negates intended 
benefit of enclave tasks. Reproduced from [1].
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Limitations:
● Insensitive to non-OpenMP events.
● Doesn’t support depend clause or 
distribute & workshare constructs.

● Can’t attribute nodes to target source.
● No means of filtering events.

Focus of future work:
● API & analysis workflow for data-driven 

taskification of serial code.
● Quantitative performance measurements.
● Support for other tasking runtimes e.g. Intel 

oneAPI toolchain.
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