
0

0

0

0

8

8

4

4

5

5

9

11 10

6 12

0

0

0

0

2 3 4 5

Results

Otter: An OMPT Tool for Tracing and
Visualising OpenMP Tasks

● Single time-steps observed in default and enclave tasking modes shown above.
● Default (left): cells updated sequentially in parallel-for blocks during synchronised domain

traversal tasks.
● Enclave (right): synchronised tasks spawn unsynchronised non-critical enclave tasks which

may be overlapped with later communication phase (not shown).
● Both time-steps show 81 parallel-for regions corresponding to cells of 9x9 grid, with graph

structure determined by tasking mode.
● Otter illustrates inefficiencies of LLVM OpenMP implementation observed in [1] – native

scheduler not able to take advantage of concurrency exposed by enclave tasks.

◀ Single times-steps observed
by Otter for default (left) and
enclave (right) versions of the
solver.

Introduction

Adam Tuft (MSc Scientific Computing and Data Analysis programme, Department of Computer Science, Durham University) · adam.s.tuft@durham.ac.uk · github.com/adamtuft/otter

Solution Overview
● Otter: event-driven, callback-based tool for tracing and visualising structure of parallel-for- &

task-based OpenMP programs.
● OpenMP Tools (OMPT) interface is a non-invasive, portable alternative to direct

instrumentation.
● Otter traces runtime event data from OMPT interface in OTF2 format.
● Trace data transformed into a directed acyclic graph (DAG) visualising parallel-for- and task-

based structure.

#pragma omp parallel
{
 #pragma omp single nowait
 #pragma omp taskloop nogroup
 for (int j=0; j<4; j++)
 {
 // do work
 }
}

Region Symbols

parallel

initial task

explicit task

implicit barrier

taskwait

taskgroup

master

taskloop

single

for-loop

int fib(int n) {
 int i, j;
 if (n<2) return n;
 #pragma omp task
 i = fib(n-1);
 #pragma omp task
 j = fib(n-2);
 #pragma omp taskwait
 return i+j;
}

▲ OpenMP constructs are represented as nodes. Edges represent execution flow and task creation &
synchronisation.

▶ Propagation of seismic waves around Mount
Zugspitze, Germany, simulated with ExaHyPE.
Reproduced from [2].

● ExaHyPE: engine for solving first-order hyperbolic PDEs.
● Uses adaptive spatial grids of Peano-4 to serialise domain cells along space-filling curve (SFC).

May spawn OpenMP task on each cell.
● Case study target: Solver from [1], using default and enclave task generation modes.
● In a single time-step threads traverse partitions of the SFC to update the cells of the grid.
● Default: per-thread grid traversals mapped onto a set of synchronised OpenMP tasks.
● Enclave: non-critical cell updates packaged in enclave tasks to allow overlap with

communication & reduce time-to-solution.

Limitations & Future Work

● Understanding performance of task-based code difficult due to additional concurrency of tasks
& myriad scheduling possibilities.

● Thread-centric analysis tools obscure underlying task-graph structure by showing particular
scheduling of tasks onto threads.

● Opportunity: portable performance analysis tool for measuring & visualising task graph
structure of task-based code.

● Case study reveals the task-based structure of a PDE solver produced with ExaHyPE & illustrates
performance bottlenecks identified in LLVM’s OpenMP implementation.

Case Study: Visualising the Task Graph of a Task-Based PDE Solver from ExaHyPE

Acknowledgements

References

0
100

101
102
103
104
105

P
en

d
in

g
ta

sk
s

native

hold-back

backfill

0 100 200 300

Simulation time in seconds

0

2

4

B
S

P
ta

sk
s

0
100

101
102
103
104
105

P
en

d
in

g
ta

sk
s

0 100 200 300

Simulation time in seconds

0

2

4

B
S

P
ta

sk
s

▲ Tasking inefficiencies observed in LLVM OpenMP implementation for ill-balanced (left) and well-
balanced (right) loads. Native task limit and greedy consumption of ready tasks negates intended
benefit of enclave tasks. Reproduced from [1].

[1] Schulz, Holger, et al. (2021) Task inefficiency patterns for a wave equation solver. arXiv preprint
arXiv:2105.12739
[2] Reinarz, Anne, et al. (2020) ExaHyPE: An engine for parallel dynamically adaptive simulations of
wave problems. Computer Physics Communications 254

The ExCALIBUR programme is supported by the UKRI Strategic Priorities Fund. The programme is led by the
Met Office and the Engineering and Physical Sciences Research Council (EPSRC) along with the Public
Sector Research Establishment, the UK Atomic Energy Authority (UKAEA) and UK Research and Innovation
(UKRI) research councils, including the Natural Environment Research Council (NERC), the Medical Research
Council (MRC) and the Science and Technologies Facilities Council (STFC).

This work is supported by ExCALIBUR's cross-cutting tasking theme (grant ESA 10 CDEL).

Limitations:
● Insensitive to non-OpenMP events.
● Doesn’t support depend clause or
distribute & workshare constructs.

● Can’t attribute nodes to target source.
● No means of filtering events.

Focus of future work:
● API & analysis workflow for data-driven

taskification of serial code.
● Quantitative performance measurements.
● Support for other tasking runtimes e.g. Intel

oneAPI toolchain.

	Page 1

