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Towards an Exascale PDE Engine
ExaHyPE [1] is designed to enable medium-sized
interdisciplinary research teams to quickly realise
extreme-scale simulations of grand challenges.
The ExaHyPE Engine solves systems of first-order
hyperbolic PDEs of the form:
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ExaHyPE employs higher-order ADER-DG on
tree-structured adaptive Cartesian grids using
a-posteriori subcell Finite-Volume limiting [4]:
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“What’s an Engine?”
Similar to a “game engine”, we aim for efficient core
functionality but also application flexibility:
I fixed parallel AMR framework: Peano [3]

(tree-structured adaptive Cartesian grids;
MPI+Tasking parallelism, load balancing)
→ www.peano-framework.org

I fixed numerics: high-order discontinuous
Galerkin with ADER time-stepping (ADER-DG)
with a-posteri Finite-Volume subcell limiting

I flexible w.r.t. applications: hyperbolic PDEs
stemming from conservation laws

Code generation is our means to manage software
complexity.

Role-Oriented Code Generation:
We have observed the following roles for software
development on the engine and on its applications:
I application expert(s): implements the PDE

system, problem-specific initial/boundary
conditions, etc., for a given application;
desires straightforward user API that hides
complexity of solver and optimisation

I algorithms expert(s): implements efficient
numerical schemes; shall design
architecture-oblivious algorithms via custom
macros that isolate low-level optimisation

I optimisation expert(s): performs hardware-
aware optimisation on performance-critical
components of the solver – relies on
abstractions by algorithmic templates.

Any role might be adopted by multiple users.
Any user may adopt multiple roles.

ExaHyPE’s Toolkit and Code Generator [2] thus
provide separate views for each role.
Toolkit and Code Generator are stand-alone
applications based on the Jinja2 templating engine.

How to Create Code that is Easy to Use & Extend, Flexible, Efficient, . . . ?

ExaHyPE user solver

Optimised or generic kernels

PDE terms (C/C++ or Fortran) 

ExaHyPE core

Solver base classes (ADER-DG, FV, ...)

Algorithms (time stepping, AMR, ...)

Plotters for various file formats
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Grid management and heaps

Distributed-memory parallelisation

Shared-memory parallelisation
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Using the ExaHyPE Toolkit:

1 create a specification file that
defines the domain, PDE system,
required architecture,
parallelisation, etc.

2 ExaHyPE toolkit creates glue code,
application-specific template
classes and core routines (tailored
to application and architecture)

3 implement the application classes
with PDE- and scenario-specific
methods:
– flux(...), ncp(...), . . . for PDE terms

(conservative fluxes, non-conservative
products, etc.)

– eigenvalues(...) to compute
eigenvalues (for Riemann solvers)

– boundaryValues(...), etc.

Jinjia2 Templates and Model-View-Controller Design
ExaHyPE Toolkit and Code Generator follow a
Model-View-Controller Design – e.g., for the Toolkit:
I Controller: builds multiple contexts from the

specification file, such as type of PDE, choice of
numerical solver, architecture, etc.

I Model: responsible for generating a specific View –
e.g., generate the glue code for either a finite
volume solver or an ADER-DG solver

I View: Jinja2 template engine is invoked to render
templates that are tailored to Model-provided
contexts.

Jinjia2 templates allow “logic” in the code representation,
while keeping it close to the generated code and easily
readable and expandable. For example
{% if initA %}
{{ allocateArray(’A’, nDof )}}
for(int i=0; i<{{ nDof }}; ++i) {

A[i] = B[i+{{ nDof*nVar }}] * {{C}}[i];
}
{% endif %}

may generate the following code:
double A[5] __attribute__ (( aligned (32)));
for(int i=0; i<5; ++i) {

A[i] = B[i+20] * foo[i]
}

Creating an ExaHyPE Application: View for the Application Expert
Specification file: Implementation of flux function:
exahype -project Elastic

peano -kernel -path const = ./Peano
exahype -path const = ./ ExaHyPE
output -directory const = ./ Elastic

computational -domain
dimension const = 3
width = 1.0, 1.0, 1.0
offset = 0.0, 0.0, 0.0
end -time = 1.0

end computational -domain

solver ADER -DG ElasticWaveSolver
variables const = v:3,sigma :6
parameters const = rho:1,cp:1,cs:1
order const = 7
maximum -mesh -size = 2e-2
maximum -mesh -depth = 2
time -stepping = global
terms const = flux ,ncp ,
material_parameters ,point_sources

optimisation const = optimised
language const = C
basis = Lobatto

end solver
end exahype -project

void Elastic :: ElasticWaveSolver
::flux(const double* const Q,

double ** const F) {
VariableShortcuts s;
double sigma_xx=Q[s.sigma + 0];
double sigma_yy=Q[s.sigma + 1];
double sigma_zz=Q[s.sigma + 2];
double sigma_xy=Q[s.sigma + 3];
double sigma_xz=Q[s.sigma + 4];
double sigma_yz=Q[s.sigma + 5];
F[0][ s.v + 0] = -sigma_xx;
F[0][ s.v + 1] = -sigma_xy;
F[0][ s.v + 2] = -sigma_xz;
F[1][ s.v + 0] = -sigma_xy;
F[1][ s.v + 1] = -sigma_yy;
F[1][ s.v + 2] = -sigma_yz;
F[2][ s.v + 0] = -sigma_xz;
F[2][ s.v + 1] = -sigma_yz;
F[2][ s.v + 2] = -sigma_zz;

}

References
[1] A. Reinarz et al.: ExaHyPE: An engine for parallel

dynamically adaptive simulations of wave problems.
Comp. Phys. Comm. 254, 2020.
http://dx.doi.org/10.1016/j.cpc.2020.107251

[2] J.-M. Gallard et al.: Role-oriented code generation in an
engine for solving hyperbolic PDE systems.
2019 Int. Workshop on Softw. Eng. for HPC-Enabled
Research (SE-HER), SC19.

[3] T. Weinzierl: The Peano software—parallel,
automaton-based, dynamically adaptive grid traversals.
ACM Trans. Math. Softw. 45(2): 14, 2019.

[4] O. Zanotti, F. Fambri, M. Dumbser, A. Hidalgo: Space-time
adaptive ADER discontinuous Galerkin finite element
schemes with a posteriori sub-cell finite volume limiting.
Computers & Fluids 118, 2015, p. 204–224.

Download the ExaHyPE engine from: www.ExaHyPE.org
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