
Role-Oriented Code Generation in ExaHyPE
M. Bader, J.-M. Gallard, L. Rannabauer (Technical University of Munich)
A. Reinarz, T. Weinzierl (Durham University)

Towards an Exascale PDE Engine
ExaHyPE [1] is designed to enable medium-sized
interdisciplinary research teams to quickly realise
extreme-scale simulations of grand challenges.
The ExaHyPE Engine solves systems of first-order
hyperbolic PDEs of the form:

P
∂Q
∂t

+∇ · F(Q,∇Q) +
d∑

i=1

Bi(Q)
∂Q
∂xi

= S(Q) +
∑

δ

ExaHyPE employs higher-order ADER-DG on
tree-structured adaptive Cartesian grids using
a-posteriori subcell Finite-Volume limiting [4]:

Finite Volume Limiting

Code Generation

High Order ADER-DG

Tree Structured AMR

“What’s an Engine?”
Similar to a “game engine”, we aim for efficient core
functionality but also application flexibility:
I fixed parallel AMR framework: Peano [3]

(tree-structured adaptive Cartesian grids;
MPI+Tasking parallelism, load balancing)
→ www.peano-framework.org

I fixed numerics: high-order discontinuous
Galerkin with ADER time-stepping (ADER-DG)
with a-posteri Finite-Volume subcell limiting

I flexible w.r.t. applications: hyperbolic PDEs
stemming from conservation laws

Code generation is our means to manage software
complexity.

Role-Oriented Code Generation:
We have observed the following roles for software
development on the engine and on its applications:
I application expert(s): implements the PDE

system, problem-specific initial/boundary
conditions, etc., for a given application;
desires straightforward user API that hides
complexity of solver and optimisation

I algorithms expert(s): implements efficient
numerical schemes; shall design
architecture-oblivious algorithms via custom
macros that isolate low-level optimisation

I optimisation expert(s): performs hardware-
aware optimisation on performance-critical
components of the solver – relies on
abstractions by algorithmic templates.

Any role might be adopted by multiple users.
Any user may adopt multiple roles.

ExaHyPE’s Toolkit and Code Generator [2] thus
provide separate views for each role.
Toolkit and Code Generator are stand-alone
applications based on the Jinja2 templating engine.

How to Create Code that is Easy to Use & Extend, Flexible, Efficient, . . . ?

ExaHyPE user solver

Optimised or generic kernels

PDE terms (C/C++ or Fortran)

ExaHyPE core

Solver base classes (ADER-DG, FV, ...)

Algorithms (time stepping, AMR, ...)

Plotters for various file formats

E
x
a
H

y
P

E
 s

p
e
c
ifi

c
a
ti

o
n

 fi
le

E
x
a
H

y
P

E
 t

o
o
lk

it

li
b

x
s
m

m
Peano

Grid management and heaps

Distributed-memory parallelisation

Shared-memory parallelisation

steers

generates

written by user

toolkit/prepared by toolkit

Using the ExaHyPE Toolkit:

1 create a specification file that
defines the domain, PDE system,
required architecture,
parallelisation, etc.

2 ExaHyPE toolkit creates glue code,
application-specific template
classes and core routines (tailored
to application and architecture)

3 implement the application classes
with PDE- and scenario-specific
methods:
– flux(...), ncp(...), . . . for PDE terms

(conservative fluxes, non-conservative
products, etc.)

– eigenvalues(...) to compute
eigenvalues (for Riemann solvers)

– boundaryValues(...), etc.

Jinjia2 Templates and Model-View-Controller Design
ExaHyPE Toolkit and Code Generator follow a
Model-View-Controller Design – e.g., for the Toolkit:
I Controller: builds multiple contexts from the

specification file, such as type of PDE, choice of
numerical solver, architecture, etc.

I Model: responsible for generating a specific View –
e.g., generate the glue code for either a finite
volume solver or an ADER-DG solver

I View: Jinja2 template engine is invoked to render
templates that are tailored to Model-provided
contexts.

Jinjia2 templates allow “logic” in the code representation,
while keeping it close to the generated code and easily
readable and expandable. For example
{% if initA %}
{{ allocateArray(’A’, nDof)}}
for(int i=0; i<{{ nDof }}; ++i) {

A[i] = B[i+{{ nDof*nVar }}] * {{C}}[i];
}
{% endif %}

may generate the following code:
double A[5] __attribute__ ((aligned (32)));
for(int i=0; i<5; ++i) {

A[i] = B[i+20] * foo[i]
}

Creating an ExaHyPE Application: View for the Application Expert
Specification file: Implementation of flux function:
exahype -project Elastic

peano -kernel -path const = ./Peano
exahype -path const = ./ ExaHyPE
output -directory const = ./ Elastic

computational -domain
dimension const = 3
width = 1.0, 1.0, 1.0
offset = 0.0, 0.0, 0.0
end -time = 1.0

end computational -domain

solver ADER -DG ElasticWaveSolver
variables const = v:3,sigma :6
parameters const = rho:1,cp:1,cs:1
order const = 7
maximum -mesh -size = 2e-2
maximum -mesh -depth = 2
time -stepping = global
terms const = flux ,ncp ,
material_parameters ,point_sources

optimisation const = optimised
language const = C
basis = Lobatto

end solver
end exahype -project

void Elastic :: ElasticWaveSolver
::flux(const double* const Q,

double ** const F) {
VariableShortcuts s;
double sigma_xx=Q[s.sigma + 0];
double sigma_yy=Q[s.sigma + 1];
double sigma_zz=Q[s.sigma + 2];
double sigma_xy=Q[s.sigma + 3];
double sigma_xz=Q[s.sigma + 4];
double sigma_yz=Q[s.sigma + 5];
F[0][s.v + 0] = -sigma_xx;
F[0][s.v + 1] = -sigma_xy;
F[0][s.v + 2] = -sigma_xz;
F[1][s.v + 0] = -sigma_xy;
F[1][s.v + 1] = -sigma_yy;
F[1][s.v + 2] = -sigma_yz;
F[2][s.v + 0] = -sigma_xz;
F[2][s.v + 1] = -sigma_yz;
F[2][s.v + 2] = -sigma_zz;

}

References
[1] A. Reinarz et al.: ExaHyPE: An engine for parallel

dynamically adaptive simulations of wave problems.
Comp. Phys. Comm. 254, 2020.
http://dx.doi.org/10.1016/j.cpc.2020.107251

[2] J.-M. Gallard et al.: Role-oriented code generation in an
engine for solving hyperbolic PDE systems.
2019 Int. Workshop on Softw. Eng. for HPC-Enabled
Research (SE-HER), SC19.

[3] T. Weinzierl: The Peano software—parallel,
automaton-based, dynamically adaptive grid traversals.
ACM Trans. Math. Softw. 45(2): 14, 2019.

[4] O. Zanotti, F. Fambri, M. Dumbser, A. Hidalgo: Space-time
adaptive ADER discontinuous Galerkin finite element
schemes with a posteriori sub-cell finite volume limiting.
Computers & Fluids 118, 2015, p. 204–224.

Download the ExaHyPE engine from: www.ExaHyPE.org
ExaHyPE was developed as a joint project of:

in particular by:

Dominic Charrier, Benjamin Hazelwood, Tobias Weinzierl (University of Durham), Michael Dumbser, Francesco Fambri, Maurizio
Tavelli, Olindo Zannotti (University of Trento), Alice Gabriel, Kenneth Duru (Ludwig-Maximilians-University Munich), Luke Bovard,
Sven Köppel, Luciano Rezzolla (Frankfurt Institute for Advanced Studies), Jean-Mathieu Gallard, Leonhard Rannabauer, Anne
Reinarz, Philipp Samfaß, Angelika Schwarz and Vasco Varduhn (Technical University of Munich).
We thank the Leibniz Supercomputing Centre and the Russian Academy of Sciences for their support.

