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1. Introduction/Application 3. Triangle based hierarchy
Discrete Element Methods (DEM) simulate the interaction of Recursively constructed tree:
large numbers of rigid, incompressible objects with each other. . . .
. . . 1) Randomly select triangles depending on a branching
Mainstream DEM codes focus on analytical shapes to streamline ¢
. . . . e o actor
the identification of contacts between objects. This identification .. . .
. . L . e e 2) Sort every original triangle into groups based on the
dominates the simulation time. Once we switch to implicit time . .
stepping. it becomes overwhelmin distance to each of the selected triangles
PPINg; J 3) For each group construct a surrogate triangle by
We manage to support triangulated particles with efficient implicit gr.egdl.ly selectlng.B vertlges from the children to
. . . . . . minimise the maximum distance between the surrogate
DEM code using a multiresolution and multiprecision hierarchy of ) .
. . . L . and each of it's children.
shapes. Early Piccard iterations of the implicit solve are done with . . .
. . . . 4) Using the newly fitted triangle repeat from step (2) for a
lower geometric resolution and precision and are significantly . . .
. . . . given number of iterations
quicker to evaluate than the full resolution geometry while still ik b Hin g f I 4 e SIMD _
converging to an approximate solution. Early iterations yield an 9 .ranc ng acto_r € ecte. to m-aX|m|se |nstruct|ons..
initial guess and thus reduce the number of later, more expensive The triangle based hierarchy is eaglly trans'formed as the particle
iterations that are required to converge to the correct solution. translates and rotate.s. Therefore, it doesn't have to be
\_ ) reconstructed each timestep.
\_ Y,

N\

The search radius around each triangle is shown as a dotted mesh.

Left: The top level of the hierarchy. A single triangle with a check distance.
Mid left: The second level of the hierachy. Notice the tighter bounds.

Mid right: All the remaining levels of the hierachy. Has the tightest bounds.

A simple example of a hopper getting jammed

4 _ _ _ N\ Right: The original mesh.
2. Triangle-triangle distance
Geometry distance checks are calculated using a distance g _ h
minimisation algorithm. 4. Inner and outer epsilon
* The precision can be tuned to produce a result only as precise Like a traditional BVH each node has a volume, defined as all
as we need. points within € distance of the parent triangle, such that:
 Early Piccard iterations with low geometric precision only
require a few iterations. VP : CONTACT(P, child) — CONTACT(P, parent®)
. Late.Picc.ard iterations with fine geometric resolution can use Additionally we introduce a second volume, defined as all point
more iterations. within E of the parent triangle, such that:

. E -
Triangle-triangle distance check formulated as minimisation VP : CONTACT(P, parent™) — CONTACT(P, child)

problem over barycentric coordinates. Penalty functions ensure We use E to estimate the force on an object without reaching the
constraints are weakly enforced. fine resolution in a way that won't push the estimate away from
the final value.
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Minimise | X — Y
Efficient vectorisation. Fallback to robust method for ill-posed

configurations, which is also vectorised but is slower.

We utilise a computational algebra package with code generation
to implement this minimisation. A 2D example of a surface (thin line), a surrogate triangle

\_ J (thick line), an outer volume defined by € (blue) and an inner

volume defined by E (red).
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g A Scenario Full Runtime [s| Full Hybrid Runtime [s] Hierarchy Hybrid Runtime [s]
6_ Expl |C|t Eu Ier Particle collision le+403 718 2.98
Particle on slope 485 336 14.6

Algorithm A.1 Multiresolution explicit time stepping. Hopper 2.73e+04 1.88¢+-04 126

1: S: The current state of simulation : : : :

5. O () f Runtimes for 3 different example applications.

3: for R € RESOLUTIONS do

4: C' < CONTACTS(S, R, ()

5: end for

The number of iterations taken per timestep for a sphere

6: S < S + STATE_CHANGE(C) _
that bounces once on a slop and then roles down it

The simpliest way to apply the multiresolution model is to use .
it as a tree data structure to accelerate the lookup of contact
points. Starting from the coarsest level of the tree step down
the levels searching for new contacts at each level of the tree 7 ”
based on where there were contacts on the previous level. ° ! \ | | \/ WW\/ WJR
Once the finest resolution level of the tree is reached use the x A VvV \/\
current set of contact points to calculate the forces exerted on
the objects.
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Number of iterations
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A comparison of distance check methods for 500 time steps

using explicit timestepping

® Brute force triangle-triangle check 4 Hybrid triangle-triangle check |
Triangle BVH brute force check ¢ Triangle BVH hybrid check Timestep

The same graph using full resolution iterations only.
Each of these iterations is about as expensive as a depth 6 iteration
in the multiresolution model
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Algorithm A.2 Multiresolution Piccard implicit time stepping. a )
1: S: The current state of simulation -
2: P: The current prediction of the state update 8' Perfo rmance beneflts
3: Whge Ag > e do Tree traversal comparisons
4: — . i i
" for B € RESOLUTIONS do B_y traversing the data as a t_ree fewer triangle-triangle
6: C' < CONTACTS(S + P, R, C) distance checks and comparisons are needed.
7. end for Tree traversal memory access
8: P < STATE_CHANGE(C) Only the sections of the object's mesh that are in contact

9: end while

10: S < S + STATE_CHANGE(C) with another object are required so only these need to be

read from memory.

We implement implicit Euler timestepping by wrapping the Permuted inner loops contact detection

explicit loop in a piccard iteration. In each iteration we take While in the early iterations where coarse resolution

the current prediction of the future state and use that to geometry is used the contact detection is faster to perform.
construct a better approximation of the future state. Early iterations are cheap and reduce the number of later

more expensive iterations.
Permuted inner loops memory access

Algorithm A.3 Multiresolution Piccard implicit time stepping with inverted loops.

1. C () .
2. S: The current state of simulation By traversing the tree only once we can ensure that most
3: P: The current prediction of the state update nodes are visited at most once. Only situations where the
4: for R € RESOLUTIONS do state is alterned enough to bring a new section of the mesh
50 while AP > e do into contact do we need to load more of the tree. More work
6 C' < CONTACTS(S + P, R, () . .
. P « STATE.CHANGE(C) is performed on each item we load from memory.
8 end while \_ J
9: end for
10: 55+ P Scenario L1-L2 Full LI1-L2 ours L2-L3 Full L2-L3 ours L3-system Full L3-system ours
_ _ Particle collision 410 101 9.29 27.1 11.6 13.8
. Particle on slope 186 24.2 1.14 4.75 3.52 2.51
Our key idea is to permute the order of the loops. Instead of
repeatedly traversing the tree data structures we instead Hopper L0Let 04 S0 03 015 A 28.1
perform in-situ force calculations based on the contact points Data transfer volume (GBytes) between memory cache levels
\generated at the coarse levels of the tree. y for a full resolution only simulation and our hierarchy hybrid method
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