
Tasks in the OpenMP API
(A behind-the-scenes glimpse)

Dr.-Ing. Michael Klemm

Chief Executive Officer
OpenMP Architecture Review Board

michael.klemm@openmp.org

Principal Member of Technical Staff
HPC Center of Excellence at AMD

michael.klemm@amd.com

Task Execution Model

• Suited for unstructured parallelism
• unbounded loops

• recursive functions

• Several scenarios are possible:
• single creator, multiple creators,

nested tasks (tasks & worksharing)

• All threads in the team are
candidates to execute tasks

• Example: traversal of a linked list

2

while (<expr>) {
...

}

void myfunc(<args>)
{

...; myfunc(<newargs>); ...;
}

#pragma omp parallel
#pragma omp master
while (elem != NULL) {

#pragma omp task
compute(elem);

elem = elem->next;
}

Task pool

Parallel Team

Task Scheduling (taskyield Directive)

• Task scheduling points (and the taskyield directive)
• tasks can be suspended/resumed at Task Scheduling Points

(some additional constraints to avoid deadlocks)

• implicit scheduling points (creation, synchronization, ...)

• explicit scheduling point: #pragma omp taskyield

• Example:

3

single

foo()

bar()

untied:

single

foo() bar()tied: (default)

#pragma omp parallel
#pragma omp single
{

#pragma omp task
{

foo();
#pragma omp taskyield
bar();

}
}

untied

Outlining Tasks (here: clang/LLVM)

• clang/LLVM splits task creation
• allocate task descriptor and data area

for the new task

• submit task to runtime system for
execution

4

void create_task(int i, double d) {
#pragma omp task firstprivate(i) \

firstprivate(d)
{

double answer = i * d;
printf("The answer is %lf\n", answer);

}
}

void caller() {
create_task(2, 21.0);

}

int32_t .omp_thunk_0(int32_t, void * task) {
char * data = ((char **)task)[0];
int i;
double d;
memcpy(&i, data + 0, sizeof(int));
memcpy(&d, data + 8, sizeof(double));
double answer = i * d;
printf("The answer is %lf\n", answer);
return 0;

}

void create_task(int i, double d) {
void * task =

__kmpc_omp_task_alloc(NULL, 0, NULL,
40 + 16, 16,
.omp_thunk_0);

char * data = ((char **)task)[0];
memcpy(data + 0, &i, sizeof(int));
memcpy(data + 8, &d, sizeof(double));
__kmpc_omp_task(NULL, 0, task);

}

Task descriptor

Task data

Task Descriptor

• Tasks to be stored in a pool need to
carry meta data
• Code pointer, data pointer

• Task descriptors usually also store
other useful bits that are hard to
determine otherwise but are easy
to save at creation time of a task.

• Examples:
• Flags (e.g., tied/untied, status)

• Scheduling priority

• Pointer to parent task

• Wait counter

• Pointer to the taskgroup

• Dependences to other tasks

5

struct task_desc_t {
void (*thunk)();
void* dataenv;
size_t env_sz;
int flags;
int priority;
task_desc_t* parent;
size_t wait_counter;
taskgroup_t* taskgroup;
task_depend_t* dephash;

};

Multiple Task Pools

• Single task pool creates contention

• Multiple, concurrent task pools

• LLVM OpenMP runtime: one per thread
• Parent tasks only add their own task pool

pool (thread 1)

pool (thread 2)

pool (thread 3)

pool (thread 0) T1

T2

T3

T4

void example() {
#pragma omp parallel num_threads(4)

{
int tid = omp_get_thread_num();

#pragma omp task // T1-T4
{

printf(“Thread %d\n”, tid);
} } }

Multiple Task Pools

• Multiple, concurrent task pools

• LLVM OpenMP runtime: one per thread

• Threads can run out of work.
Solution: load distribution.

pool (thread 1)

pool (thread 2)

pool (thread 3)

Ta Tb Tcpool (thread 0)

executing

T1 T2 T3 T4

void example() {
#pragma omp parallel num_threads(4)
#pragma omp masked filter(0)

{
for (i=1; i<=4; i++)

#pragma omp task // T1-T4
{

printf(“Thread %d\n”, tid);
} } }

Load Distribution between Task Pools

• Load Balancing:
• Task Sharing: generating thread pushes work from its pool into other pools.
• Task Stealing: idle threads steal work from another thread’s task pool.

• Tasks to be stolen:
• Child Stealing: The current task keeps executing and the child is sent to the pool.
• Continuation Stealing: The current thread executes the child task and the

remainder of the parent task is added to the pool.

• Tasks to be stolen, #2:
• Steal from the tail of the pool.
• Steal from the head of the pool.

8

Multiple Task Pools: FIFO Queues

• We can re-use the FIFO queues for the multi-task pool approach:
• Each thread maintains its local FIFO queue.

• Tasks added to the pool are added at the tail of the queue.

• Tasks to be executed are taken from the head of the queue.

• FIFO queues are not the best data structure for load distribution:
• Owner of the queue and thieves have a higher conflict potential for the head of the

queue.

• Heuristics considering locality indicate:
• Youngest tasks are less likely to generate many new tasks (e.g., leaf tasks).

• It is better to steal oldest tasks in the queue, as they are expected to generate more tasks.

• Thus, thieves steal from the front of the “queue”, owner of the queue add/removes from rear.

• Use double-ended queue (deque) instead of FIFO queues.

9

Implementation: taskwait (Pseudo-code)

• Task descriptor typically contains a parent pointer!

10

struct task_desc_t {
void (*thunk)();
void* dataenv;
size_t env_sz;
int flags;
int priority;
task_desc_t* parent;
size_t wait_counter;
taskgroup_t* taskgroup;
task_depend_t* dephash;

};

void __omp_task_fini(task_desc_t* task) {
// …
if (task->parent) {

fetch-and-dec(parent->wait_counter);
}
// …

}

void __omp_taskwait(task_desc_t* task) {
// …
while(atomic_ld(task->wait_counter) > 0);
// …

}

Spin waiting is suboptimal, as one
thread is lost! Better: execute tasks!

Implementation: taskwait (Pseudo-code)

• Task descriptor typically contains a parent pointer!

11

struct task_desc_t {
void (*thunk)();
void* dataenv;
size_t env_sz;
int flags;
int priority;
task_desc_t* parent;
size_t wait_counter;
taskgroup_t* taskgroup;
task_depend_t* dephash;

};

void __omp_task_fini(task_desc_t* task) {
// …
if (task->parent) {

fetch-and-dec(parent->wait_counter);
}
// …

}

void __omp_taskwait(task_desc_t* task) {
// …
while(atomic_ld(task->wait_counter) > 0) {

taskqueue_t* queue = thread->get_queue();
task_desc_t* invoke = queue->pop_task();
__omp_exec_task(invoke);

}
// …

}
Get next task from queue and
execute it.

taskyield Implementation: No-op

• Simplification: assume only one task pool.

• Task “Tc” contains a taskyield directive.

12

T1 T2task pool

Tc’
taskyld

Tc’’

thread

st
ac

k

T1T2

Tc’
taskyld

Tc’’

taskyield Implementation: Stack

• Simplification: assume only one task pool.

• Task “Tc” contains a taskyield directive.

13

T1 T2task pool

Tc’
taskyld

thread

st
ac

k

T1T2

taskyield Implementation: Cyclic

• Simplification: assume only one task pool.

• Task “Tc” contains a taskyield directive.

14

T1 T2task pool

thread

st
ac

k

Tc’’
Tc’

taskyld
T1T2Tc’’

Implementation Choices for taskyield Directive (and TSPs)

• No-op: simply ignore the taskyield directive.
• Simplest solution.
• But executing thread is not freed (might lead to deadlocks with locks!)

• Stack-based: suspend the current task but keep it on the execution stack.
• Simple solution, new tasks are invoked while suspended task is still “active”.
• If stack depth is exceeded, implementation will need to fall back to no-op

implementation.

• Cyclic (for untied tasks): suspend current task and put into the task pool.
• Most complex solution: continuation needs to be store in the task descriptor (or:

split the tasks at TSPs into many individual sub-tasks w/ scheduling constraint).
• Only works for untied tasks, as resuming thread might be different from

suspending thread.
15

Summary

• OpenMP tasking requires a tight interplay between the compiler and the
runtime system.

• OpenMP task data is allocated from the parent task.

• OpenMP implementations are based on multiple
task pools for improved locality properties.

• Task waiting is optimized for throughput not
for wake-up latency.

16

Shameless plug!

Tasks in the OpenMP API
(A behind-the-scenes glimpse)

Dr.-Ing. Michael Klemm

Chief Executive Officer
OpenMP Architecture Review Board

michael.klemm@openmp.org

Principal Member of Technical Staff
HPC Center of Excellence at AMD

michael.klemm@amd.com

