2B
W Durham

University

Department of
Computer Science

Department of Computer Science
Durham University

2B
W Durham

University

Department of
Computer Science

Discrete Element Methods for simulating
non-spherical rigid body particles

Peter Noble, peter.j.noble@durham.ac.uk

1. Introduction/Application

Discrete Element Methods (DEM) simulate the interaction of large
numbers of rigid, incompressible objects with each other.
Mainstream DEM codes focus on analytical shapes to streamline
the identification of contacts between objects. This step
dominates the simulation time. We manage to support
triangulated particles with a wide variety of sizes in an efficient
DEM code due to a combination of several new algorithmic ideas.
Our model utilises the spring-dash-pot elastic repulsion force
model.

DEM is used by a wide variety of scientific applications to help
understand natural phenomena, engineering applications
involving granular materials and in entertainment applications for
games and film effects.

Hopper example application.

4)
2. Triangle-triangle distance

Triangle-triangle distance check formulated as minimisation
problem over barycentric coordinates. Penalty functions are
applied when constraints broken.

t1 20,12 20,1t +12 <1
ts > 0ty 20,13 +14 <1
X=A-t;+Bto+C-(1 -t —to)
Y =Dty + E-ty+ F-(1—t5—ty)
Minimise | X — Y|

Efficient vectorisation. Fallback to robust (but expessive) method
for ill-posed configurations.

Tobias Weinzierl, tobias.weinzierl@durham.ac.uk

® Brute force triangle-triangle check 4 Hybrid triangle-triangle check
Triangle BVH brute force check Triangle BVH hybrid check

Time taken (s)

50 100 500

1000

Triangles per particle

A comparison of distance check methods for 500 time steps

4)
5. Triangle based hierarchy

Recursively constructed tree:

1) Randomly select triangles equal to the branching factor
2) Sort every original triangle into groups based on the
distance to each of the selected triangles
3) For each group perform the triangle fitting method
described below
4) Using the newly fitted triangle repeat from step (2) for
a
given number of iterations

High branching factor selected so that comparisons between
hierarchies can be computed using SIMD instructions.

The triangle based hierarchy is easily transformed as the particle
translates and rotates. Therefore, it doesn't have to be

reconstructed each timestep.

Dﬁ

A 2D illustration of a triangle based bounding volume hierarchy. The
volume of each branch of the tree is defined by a triangle and a radius.

7. Surrogate hierarchy results
Time taken in seconds for a three object 500 frame simulation.
_ . Triangle hierarchy Triangle hierarchy
Mesh size Hybrid comparison based hybrid
16 0.04 0.05 0.04
48 0.20 0.19 0.11
390 9.40 1.95 1.49
The distance between a point, represented by barycentric coordinates, on each 1148 73.64 4.56 2.00
triangle is minimised to find the distance between the triangles. L)
AR h AR h
W Durham Department of Computer Science W Durham
University University
Department of] ' Department of
Computer Science Durham UnlverSIty Computer Science
()
7. Multiscale Picard results
Time taken for a fixed number of implicit time steps using 1) no
acceleration data structure 2) surrogate hierarchies to accelerate
contact point look-ups inside a Picard iteration 3) our multi scale
Picard algorithm.
\\ Scenario Method Cblgsn;zarlson Hybrid
\ Particle-particle Single level 169.16 74.42
Surrogate within Picard 1.08 0.72
Multiscale Picard 0.77 0.47
Particle-plane Single level 96.06 44.10
4 A Surrogate within Picard 0.48 0.22
7' ACtlve Sets Multiscale Picard 0.49 0.19
We use surrogate hierarchies to create models of different \ J

resolutions by cutting the tree. A valid cut is where every path
from the root to a leaf node crosses no more than one cut edge.
The resulting leaf nodes form a surrogate model.

While the cut remains close to the root node there are few triangles
in the surrogate model.

The tree is unfolded by removing a node and adding its children.
The active set is updated with the children of inner nodes that
result in a contact with another particles.

Finding initial contacts between two particle's active sets and
updating them after is a more expensive operation than updating
contact points after a transform update using the same active set.

_ J

state = initial_state estimate();
while (Iconverged(state))
active_sets = {}
for (s in surrogate levels)

contacts = find_contacts(state, active_sets)
active_sets = update_active_sets(active_sets, contacts)

state = update_state(state, contacts)

active_sets = {}
state = initial_state_estimate();
for (s in surrogate levels)

while ('converged(state))

contacts = find_contacts(state, active_sets)
state = update_state(state, contacts)

active_sets = update_active_sets(active_sets, contacts)

7. Complex particle results

Time taken for a fixed number of implicit time steps for a
collision between two particles. One particle with 80 triangles and
the other with a varying number of triangles.

Triangles 80 320 1,280 5,120

Runtime 0.087 0.23 0.26 0.24

Contacts are located in the middle of the overlap regions between two

Pa

rticles. Two levels of surrogates are shown (blue and red). The volume

defined by a surrogate doesn't have to encapsulate child surrogates but it
much encapsulate the original mesh.

7

8. Continuous collision detection

Our two versions of the Picard algorithm.

to accelerate finding contacts. Bottom - The loops are permuted. We wait
for convergence before updating the active set. The number of active set

updates is reduced.

Top - The active set is only used

-

Selecting an appropriate time step size is important but

challenging when the velocity of each particle can vary so much
compared to the interaction distance.
The time of contact can be estimated by introducing a time
N component to the triangle-triangle distance check.

7. Implicit time stepping

We achieve an implicit time stepping scheme through Picard
iterations. Early predications of the future state are iteratively
used to computer increasingly accurate predictions. A lot of effort
is expended computing contact points where the finest level
surrogate model is used. However, early iterations may have a
bad approximation of the transformation so the contact points
won't be accurate.

We propose an alteration to the algorithm where contacts
generated using the coarser level surrogates are used to
estimate the forces during early iterations. The aim is to
reduce the number of expensive fine level iterations that are
required.

References

This can be thought of as a 4D mesh where we search for
contacts.

8. Future work - Variable precision

Lower precision used when comparing the upper levels of the
hierarchy (with extra tolerance to avoid introducing errors).
Future ideas

GPU variable precision to add 16 bit (even lower in the
future).

Store arrays of double as two arrays of floats (approximation
and a delta). Begin computation on the first while loading
the second for later iterations.

Krestenitis K, Weinzierl T, Koziara T. Fast DEM collision checks on multicore nodes. In: Parallel Processing and Applied Mathematics; 2018;

Lublin, Poland.

Krestenitis K, Weinzierl T. A multi-core ready discrete element method with triangles using dynamically adaptive multiscale grids.

Concurrency Computat Pract Exper. 2019;

