
This work is dedicated to my daughters Finja Sophie and Stina Marie. I would never
have been able to complete it without the constant support of my wife Marion.





Preface

More than ten years ago, the Gordon Bell Prize was awarded for a seismic calibration
code [2]. According to the authors, mesh generation based upon octrees was one key
feature to achieve the reported performance. Octrees look back on a long tradition
of runs on the biggest machines in the world, and every year the supercomputing
community continues to face new codes resting upon octree or, more general, space-
tree meshes; either for solvers of partial differential equations (PDEs) or n-body
codes where the original fast multipole method, being among the most important
algorithms of the 20th century [24], describes spacetree meshing. Spacetrees have
been and continue to be a fundamental data structure and data organisation concept
for high performance computational science & engineering (CSE).

Much of my own research of the last six years orbits around the concept of
spacetrees—with emphasis on algorithmic problems in supercomputing and less at-
tention to supercomputing applications and high performance engineering. I thus
decided to make document present eight selected papers that all rely on this partic-
ular data structure. They either tackle a particular application challenge or study,
augment or efficiently realise this data structure generically. All methodological
ingredients presented are integrated into one spacetree code [94]. All application-
centred work relies on this code base. It is thus a valid and natural question to ask
whether this document is about ‘yet another spacetree code’. It is. However, this
answer comes along with the footnote that this collection of papers comprises more
than the documentation of an implementation well-suited to write spacetree-based
solvers. The algorithms and methods are of value for any spacetree or related im-
plementation. Their integration into one code base validates that they work hand in
hand. Their comparison to other approaches facilitates a classification of and differ-
entiation to spacetree codes in general. Their application validates their usefulness
and uncovers open issues in the spacetree context.

Synopsis of discussed work. The eight papers tackle different challenge flavours.

1. We discuss how we can realise the traversal of serialised spacetrees efficiently
in the paper Peano—A Traversal and Storage Scheme for Octree-Like
Adaptive Cartesian Multiscale Grids [96]. The joint work with Miriam Mehl
interprets the term efficiency in terms of low memory requirements, arbitrary
dynamic adaptive grids and memory usage characteristics. While it presents
ideas derived and realised in my dissertation [91], it goes significantly beyond
the dissertation as it proofs the correctness of all algorithmic steps. The paper
appeared in SIAM Journal on Scientific Computing (SISC) in 2011.

2. The second text appeared 2010 as part of the Parallel Processing and Applied
Mathematics (PPAM) conference proceedings and is titled A Blocking Strat-
egy on Multicore Architectures for Dynamically Adaptive PDE Solvers
[31]. This short text with co-author Wolfgang Eckhardt weakens some serialisa-
tion (inherent sequentiality) tied to the code base introduced with the previous
paper, since it replaces some recursive subtree traversals with array processing.

i



The methodological contribution as such is incremental, but it turns out that the
idea is the base for severe performance improvements in subsequent publications.

3. A second collaboration with Wolfgang Eckhardt plus Hans-Joachim Bungartz
and Christoph Zenger led to the work A Precompiler to Reduce the Mem-
ory Footprint of Multiscale PDE Solvers in C++ [17]. Published in 2010
in Future Generation Computer Systems, it augments the C++ language that
allow us to compress sequences of boolean variables as well as integers and enu-
merations with constrained range into bit fields, to exchange subsets of C++
classes via MPI and to distinguish object attributes that are to be held persis-
tently throughout the whole simulation from temporary ones. Whenever reali-
sation details and small memory footprint are mentioned here, they rely on the
tool DaStGen introduced with this work.

4. In SFC-based Communication Metadata Encoding for Adaptive Mesh
Refinement [81] written together with Martin Schreiber and Hans-Joachim
Bungartz we study particular properties of parallel spacetree traversals that
rely on space-filling curves: Subject of interest is the linearisation of subdo-
main boundaries which materialises in meta data (what vertices are shared by
grid fragments) that can be compressed with run-length encoding (RLE). While
the compression’s impact is limited—meta data are small—we can exploit the
RLE property to identify data sequences that is read from a stream or sent to a
neighbour as block. Vertex-by-vertex and cell-by-cell data accesses are replaced
with block accesses. This speeds up the code and reduces communication time.
The text became part of the Proceedings of the International Conference on
Parallel Computing (ParCo) in 2013.

5. In 2014, we published the work Block Fusion on Dynamically Adaptive
Spacetree Grids for Shallow Water Waves [93] in the Parallel Processing
Letters. It is joint work with Michael Bader, Kristof Unterweger and Roland
Wittmann. Subject of study are patch-based shallow water equations on dy-
namically adaptive grids that are able to exploit manycore architectures (Xeon
Phi accelerators). In the paper, we use all previously introduced methodologies,
and we apply the recursion unrolling idea to patches.

6. Joint work with Bart Verleye, Pierre Henri and Dirk Roose on a particle-in-
cell application led into Two Particle-in-Grid Realisations on Spacetrees
[97]. The novel contribution here is a Lagrangian, i.e. particle-based, formal-
ism fused into the spacetree. All work so far tackles partial differential equa-
tions (PDEs). Furthermore, this work comprises comparisons to alternative
spacetree- and SFC-based realisations and emphasises communication challenges
and communication-avoiding strategies for distributed systems. Again, all fun-
damental algorithms come along with correctness proofs which facilitates their
reimplementation. The paper is under revision for Parallel Computing.

7. As all realisations use the same code base, all apply the same programming
model. This programming model is subject of discussion in The Peano software—
parallel, automaton-based, dynamically adaptive grid traversals [92]
which is submitted to SISC’s SIAM CSE special issue on software. It dis-
cusses our programming workflow, the materialisation of parallelisation variants

ii



in source code, and alternative design decisions in other spacetree codes. As
such, it bridges the gap from ‘What is done’ to ‘How is it used’.

8. The final paper results from joint work with Bram Reps. It studies Complex
additive geometric multilevel solvers for Helmholtz equations on space-
trees [76] and is submitted to the ACM Transactions on Mathematical Software
(TOMS). Again, it focuses on implementation details which become hard due to
the fusion of multiple non-trivial concepts—multigrid algorithms, high problem
dimensions, complex arithmetics. We are particular proud of the usage of pipelin-
ing which allows us to combine full approximation storage and additive multigrid
such that each additive full approximation cycle requires only one multiscale grid
sweep. The algorithm comes along with the minimal number of memory reads.
As soon as we combine this property with a solver simultaneously handling multi-
ple coupled PDEs we obtain good vectorisation results at low memory footprint;
for an in-situ, dynamically generated, adaptive mesh that unfolds as in a classic
F-cycle and tackles an ill-conditioned problem.

The order of the papers follows their submission date. Their ideas are not tied to
a particular spacetree code. My work’s difference to other spacetree approaches lies
in the integration of programming model, computational as well as organisational
data structures, concurrency and data exchange analysis plus algorithm correctness
proofs. Other spacetree codes implement different feature sets and, in some fields,
are more mature. The present assembly of ideas goes beyond that. As I link to
related challenges such as proper load balancing, application realisation (stencil
derivation, e.g.), IO via respective interfaces, the proposed melange of ideas does
not provide a holistic solver suite. Comparisons to packages such as deal.ii [9],
DUNE [10, 11], Uintah [27], AMRClaw [25], Enzo [33], Flash [30], and so forth thus
are misplaced. This work is more restricted.

Outline of document organisation. This is an overview document summarising
selected papers and correlating them to each other. Because of the common leitmotif
and the aforementioned integration, I decided to refrain from a one-paper-after-
another presentation, i.e. the text does not follow the list from the previous pages.
Instead, it is structured into sections with one concept discussed per section. Within
the sections, I then point out which papers make particular contributions.

The text starts with a brief introduction of spacetrees (Section 1). It is thus
an excerpt and reiteration of content found in almost any of the collected papers
and establishes a common language. Of particular interest is the summary of selling
points of spacetrees, i.e. why spacetrees are a promising data structure for many
applications, that have to be used or validated. I next pick the three papers [76, 93,
97] that tackle particular applications. Section 2 sketches what these applications
are, what the overarching idea is to realise them with the spacetree, and which
challenges/research questions arise from these ideas. I also highlight the major
breakthroughs obtained.

As a programming model glues together application-specific code and data struc-
tures, our programming model is discussed next (Section 3). Hereby, it is important

iii



to relate the actual coding to formal concepts such as tasks, automata and data
serialisation. I also sketch how programming language extensions simplify work.
The section mainly refers to core statements from [92], but implementation tech-
niques from [17] detail how these are realised efficiently and elegantly with today’s
programming languages. The subsequent Section 4 discusses spacetree serialisa-
tion/linearisation. Space-filling curves here are important. A serialisation of the
spacetree, i.e. its mapping onto streams, is the constitutional idea that allows for
an efficient data structure traversal and elegant programming model. It however
induces a total order on the data, i.e. sequential processing. This eventually leads
to the question how such a linearisation fits to parallel computers. Core results and
statements can be found in [91] but are formalised and proved in [96].

With an understanding of the tree-serialisation interplay, we discuss two tree
decomposition approaches in Section 5. They allow us to run the serialised space-
tree traversals with our programming model on distributed memory architectures.
Obviously, data exchange and synchronisation from an application’s point of view
have to be picked up in this section as well. One key idea to distribute a space-
tree among different ranks and yet continue with a serialised traversal is to apply
recursion unrolling. Publication [92] acts as blueprint and source for this section
which is enriched by some ideas that arise from the application-centred paper [97].
One-step recursion unrolling is extended in Section 6 into recursion unrolling of arbi-
trary depth. We apply it to subtrees that encode regular Cartesian subgrids. It can
transform depth-first ordering into breadth-first ordering. We then can reorder the
latter along the lines of the well-known red-black colouring. This yields traversals
that parallelise on shared memory architectures with a bulk synchronous program-
ming model. While the core idea of the shared memory parallelisation is introduced
in [31], it is made an enabling technique for patch-based applications running on
manycore systems in [93]. In Section 7, I bring space-filling curves serialising the
tree, shared and distributed memory parallelisation as well as recursion unrolling
together. The combination of all three ideas facilitates efficient data transfer—either
from processor to memory, or from node to node, or from memory to manycore chip
through several memory controllers. Core statements result from [81].

We close the overview in Section 8 where we pick up the three major applications
(use cases) again, reiterate the spacetree’s selling points at hands of these applica-
tions, and highlight how the algorithmic ideas introduced so far help us to answer
the research questions that arose from the applications. The text closes with a clas-
sification of spacetree codes in general, i.e. puts the present concepts into perspective
to other codes, and raises some research questions that had to remain open.

How to read this document. Central ideas and terms per paragraph are set in
italic. They highlight the red thread through the text. The core statements from the
discussed papers are set in boxes. They also come along with links to the respective
publications. I do not excerpt all core statements. Only statements referring to the
grid management, programming model and high performance computing (HPC) are
picked up.

iv



Contents

1 The spacetree meshing paradigm 1

2 Case studies 3

3 Programming paradigms 8

4 Serialisation vs. sequentialisation 11

5 Tree decomposition on distributed memory 14

6 Recursion unrolling 17

7 Partition boundaries and regular subtrees 19

8 Results from the case studies 21

9 Conclusion 27





1 The spacetree meshing paradigm

All discussed papers rely on the concept of spacetrees. A spacetree is constructed
as follows: We embed the computational domain Ω, subject to a partial differential
equation (PDE) or a particle-based formalism, into a hypercube that is axis-aligned
with the Cartesian coordinate axes. This geometric primitive is called root of the
spacetree. We cut the primitive equidistantly into k parts along each coordinate
axis and end up with kd new d-dimensional cubes. d is the spatial dimension of
Ω ⊂ Rd. Each of the kd primitives is a child of the root. We finally determine for
each child recursively and independently whether to continue to refine or not. The
child-parent relations define a directed graph, a partial order, on the cubes. The set
of all cubes together with that order is the k-spacetree.

Core statement from [96]: The k-spacetree construction describes a generalisa-
tion of the well-known quadtree/octree concept.

k-spacetrees with k = 3 in two dimen-
sions (left); k = 2 yields an octree in
three dimensions (right). From [91].

k-spacetrees as such form a class of a pop-
ular data structures in scientific computing—
[2, 4, 6, 13, 22, 23, 49, 79, 84, 85] is far from
a comprehensive list of examples. The term
generalisation is twofold. It refers to the spa-
tial dimension d—an eponymous property for
quadtrees and octrees [78]—and it refers to the
subdivision count. The term spacetree neither
fixes the dimension nor the subdivision factor.
For the present papers, it is notably inspired
by [34] where it is used to highlight the d-
independence, while [50, 51] and [66, 73] restrict
themselves in a similar context to k = 3 and de-
rive Latin identifiers. They are tongue twisters.
We therefore stick to a generic nomenclature.

All papers in the present collection start from k = 3. k = 3 stems from the
fact that we use the Peano space-filling curve (SFC) [3, 77] to design the underlying
grid management. This SFC as well as its unique properties are subject of study
in Sections 4 and 7. Yet, most algorithmic statements besides the grid’s storage on
streams in Section 4 hold for arbitrary k ≥ 2. While we use the term k-spacetree
to emphasise the generality but at the same time use k = 3 for all experiments,
the SFC discussion in [91] already emphasises that any odd k works out for the
present grid management algorithms without modifications. Furthermore, Sections
5 and 6 introduce techniques that conceptionally rewrite a (k = 3)-spacetree into a
spacetree with different subdivision properties if certain conditions are fulfilled. In
Section 8, we extend this fact to patch-based discretisations. In accordance with
[87, 90, 98], we finally note that odd k are beneficial for cell-centred discretisations,
as cell centres of a cell coincide with finer cell centres once an element is refined.

1



Spacetrees yield a cascade of ragged
Cartesian grids. From [93].

One advantages of the Peano space-filling
curve motivating k = 3 is its straightforward
extension to arbitrary spatial dimensions d—a
property it shares, to the best of our knowledge,
exclusively with the Morton order [3, 72, 77]
(cmp. Section 4). Spacetrees can be applied to
any d of Ω ⊂ Rd anyway. While the discussed
papers besides [76] stick to d ∈ {2, 3}, all algo-
rithms work for any d ≥ 2. Algorithms for d > 3
are of use in the context of space-time discreti-
sations [32, 36, 37, 52, 53, 56, 57, 61, 62, 69, 70,
82, 95] or multi-parameter settings tackled by
systems of partial differential equations [76]. To
avoid confusion with k-d-trees, a generalisation
of space partitioning to non-equidistant domain
subdivision and anisotropic refinement, the spa-
tial dimension d is not picked up in the notion
explicitly.

Spacetree-grid equivalence. Each d-dimensional cube within the spacetree has
a level being the minimal number of refinement steps required to derive the cube
from the root. All cubes of the same level have the same size. They are non-
overlapping, as the children of one cube do not overlap. They are aligned with each
other, as k is invariant and we cut equidistantly. They can be disconnected, as the
refinement decision is made independently for each cube. All cubes of one level `
yield a computational grid Ωh,`. It can be a ragged Cartesian grid not filling in the
whole root. The cubes are either refined or unrefined. We call the latter leaves.

Core statement from [96]: A k-spacetree yields a cascade of ragged Cartesian
grids embedded into each other. The union of all leaves of the spacetree
yields an adaptive Cartesian grid Ωh. It is flat, i.e. the cells have no overlap.
The union of all spacetree nodes yields a locally refined multiscale adaptive
Cartesian grid. Cells here do overlap.

A spacetree is a formal description for a special type of an adaptive Cartesian mul-
tiscale grid. The construction process makes the grid fall into the class of block-
structured adaptive mesh refinement (SAMR). Since we stick to that special class
of grids, we have two equivalent formalisms at hand to discuss properties and algo-
rithms of the grid: a tree language and a grid language.

Selling points. All spacetree codes share similar advantageous properties.

• They facilitate (dynamic) adaptivity. Their construction maps refinement
or coarsening onto adding or removing nodes from the tree. Adaptivity is one

2



of the state-of-the-art requirements of grid-based solvers today [29]. It allows
computers to spend memory and effort where they pay off most.

• They facilitate in-situ mesh generation. Given a description of the com-
putational domain and its bounding box, their construction allows to load the
description into the compute nodes and to generate the mesh there on-the-fly
rather than to preprocess the mesh out-of-core and then upload the mesh into
each node. In-situ mesh generation is important on today’s supercomputers
suffering from IO restrictions [29].

• They facilitate dimension-generic programming. Their geometric ele-
ments fit to d-parameterised tensor product formulations. At the same time,
the orthogonality of the underlying element coordinate system allows the com-
bination of different integrators (time integrator in one direction and spatial
discretisation along the other directions, e.g.) easily. Dimension-generic pro-
gramming renders the realisation of multipurpose codes—mathematical pro-
totype vs. application domain production code—more economic.

• They facilitate geometric multiscale algorithms. Their construction de-
scribes a hierarchy of grids and it is straightforward to exploit this hierarchy
for solvers or multiple physics. Multiscale algorithms are among the most effi-
cient linear algebra solvers. Multiphysics codes are among the great challenges
today [29].

• They facilitate domain decompositions. Their construction describes a hi-
erarchical decomposition of the computational domain. This built-in decom-
position can be used on shared and distributed architectures to realise par-
allelisation. Domain/data concurrency is the dominant parallelisation strat-
egy today and will remain important—though not the silver bullet of parallel
programming—with the growth of concurrency in hardware [29].

• They facilitate efficient algorithms because of their structuredness.

The latter statement is a dogmatic claim that has to be substantiated.

2 Case studies

Three case studies give examples where and how spacetree-based algorithms can
push applications forward. The other way round, the applications raise questions
alike ‘how can this be realised within a spacetree elegantly with good performance’.

A shallow water simulation. In collaboration with the group of Michael Bader
(Technische Universität München) we studied shallow water equations (SWEs)

∂t

 h
h u
h v

 + ∂x

 h u
h u2 + 1

2
g h2

h u v

 + ∂y

 h v
h u v

h v2 + 1
2
g h2

 = S(t, x, y) (1)

describing a solution triple (h, u, v) over space (x, y) and time t on spacetree grids.
h is the water height, u and v velocities. Using spacetrees in this application area is

3



common practice. Early papers ([14] for example) already describe a spacetree-like
methodology. Our code implementation fragments from [87].

Shallow water code in action acting
on the Durham code of arms as toy
problem. From [93].

We start from the observation that spacetree
cells should not act directly as finite volumes for
the underlying finite volume scheme: for the re-
quired degree of resolution, very deep spacetrees
would be required while the computational load
per finite volume is limited. Our work proposes
hence to embed patches, i.e. small regular Carte-
sian grids, into the spacetree leaves. They de-
fine the finite volumes and are augmented by
a small halo/ghost layer. Thus, the spacetree
describes an overlapping domain decomposition
and acts as organisational data structure. On
the patches, we can invoke optimised kernels (op-
erations) to solve the Riemann problems with
uniform vectorised stencils [5, 7, 68]. Bench-
marks with these kernels reveal that patches with
a big number of finite volumes yield good perfor-
mance. Yet, large patches constraint the adap-
tivity: for a given memory footprint, shock sur-
faces can not be resolved anymore as accurately.
The total memory requirements easily exhaust a
node—in particular low-memory nodes such as
Xeon Phis—and a high MFlop rate faces that
fact that with big patches more work is invested
than actually required numerically. We face a
dilemma. The central questions raised by paper
[93] thus read:

1. How can we elegantly support patches embedded into a dynamically adaptive
spacetree without exposing technical details such as adaptivity management
and thus requiring existing kernels for regular grids to be altered.

2. What are reasonable patch sizes for the present challenge that fit to current
hardware architectures?

3. How can we compromise between aggressive adaptivity and high-throughput,
regular patches used as elementary building block in the grid?

The paper relies on the multicore parallelisation strategies introduced in Section
6 and fuses them with optimised kernels written for regular grids (patches) of the
group of Michael Bader [5]. Its seminal new contribution results from a combination
of these patch-based solvers with the spacetree. The code starts from one patch
embedded into each leaf. As soon as assemblies of leaves are identified which can be
fused into one large regular grid, such a grid is embedded into the coarser levels of
the spacetree and the code continues to work with this large, regular data structure

4



until dynamic adaptivity forces it to break up again. The on-the-fly patch fusion
relies on an analysed tree grammar very similar to ideas from [31] used in Section 6.

Core statement from [93]: To the best of our knowledge, this is one of the first
publications that were able to exploit very large vector registers plus the
Xeon Phi’s many cores for unconstrained dynamically adaptive grids.

A particle-in-cell code. In a collaboration with Bart Verleye, Dirk Roose and
Pierre Henri (KU Leuven and the Flanders ExaScience Lab), we studied a clas-
sic particle-in-cell code simulating space weather. Particles are embedded into the
computational domain hosting a partial differential equation (PDE). They determine
the right-hand side of the time dependent PDE. The PDE in turn accelerates the
particles. While the particles do not interact with each other, interaction happens
through the PDE solution.

Particles explode in a domain and the adaptive grid follows the explosion. From [97].

Particle-grid methods are well-established in the spacetree community. We refer to
the many fast multipole algorithms [24]. These are upon the best-scaling codes in
the world, but our challenge is significantly harder. Since particles do not interact,
the arithmetic intensity of the particle update and move phase are negligible. They
reduce to a ‘run through them once and then sort them into the right grid cell’
problem. ‘Unfortunately’, we study setups with superthermal particles. CFL-type
mesh width constraints do not apply then anymore globally: very few particles are
allowed to move with arbitrary speed and thus may jump over several cells per time
step. They tunnel. We hence have to sort all particles globally per time step while
the step has vanishing arithmetic intensity. The central questions raised by paper
[97] thus read:

4. How do we store particles within a spacetree such that grid-particle and
particle-grid mappings can be evaluated fast?

5. Can we update this storage scheme quickly if the particles move?

6. Can we make the code scale even if some particles tunnel?

The paper proposes to decompose the spacetree among all ranks and to hold the
particles on the respective ranks with links from the cells or vertices, respectively,

5



to particle lists. It studies two realisation schemes (and compares to two further
schemes) together with update mechanisms for this associativity and presents cor-
rectness proofs. The last research question picks up the fact that we require global
sorting per time step and necessarily run into latency issues to synchronise all ranks:
Even if no particles tunnel, each rank requires a notification of all other ranks that
no particles tunnel into its domain. The paper again exploits the spacetree’s multi-
scale nature and analyses maximal particle velocities on all scales to deduce where
parts of the synchronisation can be skipped.

Core statement from [97]: To the best of our knowledge, this is the first publica-
tion introducing communication-avoiding algorithms for grid-particle codes
where particle velocities are not constrained.

A multigrid Helmholtz solver. In a collaboration with Bram Reps (Univer-
sity of Antwerp) we studied the dynamics of p quantum particles described by
Schrödinger equations. Following the seminal work of [88], these high-dimensional
problems can be reduced onto a system of stationary p-dimensional PDEs

H11 A12 . . . A1c

A21 H22 A2c
...

. . .
...

Ac1 Ac2 . . . Hcc




ψ1

ψ2
...
ψc

 =


χ1

χ2
...
χc


with the Hs representing Helmholtz equations

[−∆− φ(ρ1, . . . , ρp)]ψ(ρ1, . . . , ρp) = χ(ρ1, . . . , ρp).

Nucleon and electron distribution prob-

abilities for Deuterium that result from

various Helmholtz solves. From [76].

We rewrite the system in a Jacobi-solver manner
due to an extraction of the diagonal blocks into
an iterative scheme. Our algorithm then solves
these p-dimensional problems—they are called
channels—one after another within an outer it-
eration loop. Efficient solvers for the Helmholtz
problems thus are essential. Efficiency comprises
both the classic computer science notion of ef-
ficiency as well as the question how to tackle
their indefiniteness. The paper proposes to rely
on complex scaled grids [75] where mesh and
Helmholtz term are multiplied by a complex value
to tackle the indefiniteness. While such a shift
changes the solution of the underlying equation
system, only surface integrals around the com-
putational domain are of interest to our application. They are called field field
maps [26, 76] and are not significantly polluted by the shift.

6



Multigrid solvers are among the fastest solvers known. Our code focuses on
additive schemes as they map directly onto tree traversals and are reasonably ro-
bust. Experiments however reveal that plain additive multigrid is insufficient to
solve problems with a Helmholtz term. We thus extend the spacetree-based solvers
from [50, 66, 71, 73] into a hierarchical basis [48] and a BPX-variant [12]. Because
of the high dimension p, we require an F-cycle type solver unfolding an adaptive
grid throughout the solve phase. This allows us to end up with convergence rates
close to multiplicative schemes for some problem setups. Grid unfolding yielding
different system matrices per iteration benefits from matrix-free solvers. For those,
full approximation storage (FAS) schemes that hold a solution representation on
each resolution level are advantageous as they allow to work with a hierarchical
generating system [48] and the same stencils on each level. We show in simple proof
via contradiction on the data flow graph that a combination of the objective to have
one multigrid cycle per tree traversal and FAS does not work straightforwardly. It
requires us to use pipelining [38, 40–42]. Furthermore, a plain implementation suf-
fers from the low arithmetic intensity per cell. The central questions raised by paper
[76] thus read:

7. How can complex-valued arithmetics be supported in the spacetree world (even
the mesh widths might be subject of complex scaling)?

8. How can pipelining in the implementation help to solve the Helmholtz prob-
lems efficiently, i.e. with a read-once update-once policy per unknown?

9. How can we obtain high vectorisation efficiency for the simple stencils?

In this particular application, parallelisation does not play a major role. The chan-
nel decomposition system yields embarrassingly parallel systems to be solved. Be-
cause of an unsaturated memory bandwidth usage, we propose to introduce helper
variables. This helps us to realise one unknown update per sweep including prolon-
gation in a multigrid sense and injection in a FAS meaning. As we fuse the solve
of multiple Helmholtz problems and integrate some coupling matrices (Aij) into the
F-cycle, we increase the arithmetic intensity per cell. Though this reduces the level
of concurrency—it fuses channels—the number of channels remains suitably large
to exploit medium-sized parallel computers.

Core statement from [76]: To the best of our knowledge, this is the first im-
plementation with correctness proofs that combines FAS, BPX or additive
multigrid with F-cycles as well as complex-valued arithmetics on a space-
tree. It works without explicit matrix assembly and realises pipelining such
that one additive multigrid/BPX cycle is evaluated per tree traversal.

3 Programming paradigms

Traversal concept. With a sketch what is solved on which tessellation, a central
computer science challenge is how the algorithmic ingredients and data structures

7



interplay. What is the programming paradigm? In [92] we distinguish two different
concepts to realise a code within a spacetree environment. One can either provide
the application code with the opportunity to access any grid entity at any time. This
is a random access model (RAM). Or one can prescribe the order all mesh entities
are processed and, at the same time, constrain which data is available at which
time. The latter paradigm can be formalised by a traversal automaton which calls
application routines in a predefined order and hands them over a well-defined set of
grid entities. We call these calls events and formalise this interplay of traversal and
application codes in terms of interacting automata in [92], while older, outdated lists
of events can be found in [19, 71, 91]. Events are for example ‘use/read a particular
vertex for the very first time throughout a traversal’ or ’descend from level ` into
level `+ 1 for a cell’. For RAM, all responsibility for a proper grid walk-through is
left to the user, and the spacetree comes along as library providing information such
as multiscale relations or adjacency information. Our papers rely on an inversion
of control. A basic framework implements grid storage and traversal as automaton,
and the application plugs into this framework to realise the application tasks. This
realises a separation of concerns where grid and data management as well as grid
traversal are hidden from the application-specific code.

Spacetrees are popular and mature in the fast multipole method (FMM) for
which a third, hybrid programming model is important: the dual tree traversal
[28, 54, 89]. ‘Dual’ refers to the traversal; not to be confused with a dual tree
as used in [97]. The dual tree traversal makes two automata traverse the tree. Per
state of the first automaton, the other runs through the whole tree once. Application
code fragments plug into changes of the automata state tuple. Any combination of
grid entities—automata states comprising cells plus adjacent vertices—thus becomes
available at a time, i.e. no constraints apply to the data access, while the sequence
of data availability is prescribed by the automata. Obviously, such a traversal that
is quadratic in terms of spacetree nodes can be speeded up if the code filters out,
i.e. skips, automata combinations that are not of use (cmp. to local essential or
pruned trees). Within this mindset, our automata-based traversal applies a partic-
ular filter: it restricts to automata tuples where both states are equal.

Core statement from [92]: Our codes rely on an automaton traversing the
spacetree. They plug into the automaton’s state transitions (events) to
realise application-specific behaviour; change properties of the grid entities
for example.

It is obvious that the automaton formalism realises a concept well-known under
several names besides ‘inversion of control’. The wide-spread concept of an iterator
also aims to hide the realisation and the traversal order of the underlying container
from the iterating code fragment. In the object-oriented world, the visitor design
pattern [35] realises the same idea, though less formalised and with the opportunity
to intervene with the traversal. Perhaps the most illustrative name for the program-
ming paradigm is the Hollywood principle summarised as ‘don’t call us we call you’.

8



Traversal automaton

In Out

PDE automaton (kernels)
called event mapping.

Events
Modify
grid

Heap

The multiscale grid is traversed by
one automaton reading an input
stream and writing an output stream.
Application-specific data might be
embedded into the streams. The
automata transitions (such as ‘we
enter a cell’) are passed via events
to a application code which can be
understood as a second automaton.
Events are enriched by corresponding
application-specific data from the
stream. The application code might
interact with a heap and is allowed to
trigger grid transitions such as ‘refine
area around the traversal automaton’s
current cell’. From [92].

From a supercomputing point of view, it is im-
portant to emphasise that the automata realise a
functional programming concept also realised by
higher order functional programming languages
or via callbacks (plug-in points) in many sci-
entific software packages. The hiding of how
the grid is traversed and stored not only hides
away complexity, it also hides away where events
are called in a distributed environment. The
paradigm is capable to hide concurrent event
calls, and it allows the underlying realisation
to reorder events and optimise data accesses re-
garding the memory hierarchy, e.g.

To facilitate the latter features, it is impor-
tant that the (partial) temporal order of the
plug-in points is well-defined. We have to state
which events are called for which grid parts in
which order. The order is tight to the strategy
how to run through the spacetree. The latter is
subject of discussion in Section 4. A comprehen-
sive list of events is presented in [92] or the code
documentation. What seems to be mandatory
to present in a programming paradigm context
is a central observation from [92]: Once an par-
tial event order is fixed and the application code has plugged into the events—often
we refer to these realisations as (computational) kernels—we may postulate:

Core statement from [92]: Event-based applications can be read as task graphs.
The tasks are the realisations of the events, and the partial order between
the events establishes task dependencies.

Data storage. Spacetrees are an abstract data organisation concept yielding also
a computational grid. For any application, this grid has to be filled with actual data.
We have to assign unknowns to the grid entities. Here, the application [93] differs
fundamentally from [76] while the work in [97] is a hybrid (cmp. Section 8). One
variant is to embed all application-specific data directly into the data structures
describing vertices, cells and traversal automata states. As the automaton runs
through the grid, it delivers corresponding grid entities and, with these entities,
provides the application-specific data to the application kernels.

Core statement from [92]: Application-specific data can be embedded into the
linearised spacetree. In this case, the spacetree acts as both organisational
data structure and compute data.

9



With the work of [87] enabling [93, 97], we emancipate from this data embedding
and also allow codes to store their data in a map. The grid entities’ spatial position
plus their level then act as key to this map. We call this map the heap compared to a
stream- or stacked-based approach where data is embedded into the spacetree data
(cmp. Section 4 for a motivation of the term ‘stack’). In practice, it is advantageous
to cache the map index directly as index embedded into the grid vertices or cells,
respectively, rather than to recompute it. Conceptionally, the heap concept picks up
the early work of [49] combining hash maps and the Hilbert space-filling curve. It
is a delicate, problem-specific question whether to run for heap-based data storage
or to embed the data directly into the grid.

Core statement from [92]: Because of heap storage, data of arbitrary, changing
cardinality can be assigned to grid entities.

Disadvantages are that the heap may lead to a scattering of data accesses, that the
maps induce a memory overhead, and that the handling is slightly more complicated
than a plain embedding of data into the stream. In return, we face new opportu-
nities: The particle handling from [97] would not be possible without heaps, as the
number of particles per cell may change. The shallow water code in [93] embeds
regular grids of different size into different grid levels. And all algorithms that do
not need to run through all data in each grid traversal benefit.

Besides data persistence and programming paradigms, the work of [92] also
sketches typical development workflows and some development tools that we ship
with the grid core routines. All of those are written in C++ with an emphasis on
documentation, automated unit tests, the augmentation of all routines with mean-
ingful assertions and a rigorous separation of concerns. This helps to achieve high
code quality from a software engineering point of view. However, it becomes obvious
that C++ is not the optimal choice for our high performance computing challenge
flavours. Notably problematic are the high memory overheads induced by C++’s
realisation of inheritance, padding, the mapping of bits (booleans) and bitsets onto
integers and the inappropriate support of the object-oriented programming paradigm
through MPI.

Data modelling. Our codes thus rely on the tool DaStGen [17] to model all
involved structs and classes as well as involved MPI messages which are mapped
onto classes as well. DaStGen is as simple C++ precompiler—C++ class attributes
are annotated with additional meta data—that

• maps bits and bitsets onto one big integer acting as bitfield. Thus, only one
bit per boolean is required. Support for integers where the range is known is
available as well: If an integer is annotated to hold only values between 1 and
8, only three bits are required for this integer.
• generates user-defined MPI data types such that C++ classes can directly be

used with MPI while only those attributes of a class are exchanged that are
explicitly marked. All other attributes are not sent through the network.

10



• provides two variants of each C++ class that either store all attributes or only
a subset marked as persistent. In many applications, not all attributes are
required all the time (residuals in linear algebra, e.g.) and this feature allows
the programmer to switch.

• offers support (also via MPI) for complex-valued arithmetics.

Core statement from [17]: With DaStGen’s mapping, we can reduce the
memory footprint of the application to the theoretical minimum and send
solely relevant information through the computer’s network.

Due to the tool and the spacetree’s linearisation—a topic discussed next—the
present implementation induces a memory footprint for dynamically adaptive grids
that is by an order of magnitude lower than comparable libraries or frameworks that
rely on a graphs, i.e. pointer data structures [19, 91].

4 Serialisation vs. sequentialisation

The present grid storage and traversal
management underlying all discussed
papers relies on 2d + 2 stacks to store
all spacetree data. Application-specific
properties can be embedded into these
stacks or held separately on a heap.
From [92].

Our event programming model makes the
grid traversal glue the application to the grid
data structure and the unknowns. The stor-
age of the latter is subject of discussion in this
section. A tree structure for dynamically adap-
tive grids can be mapped onto a graph realised
with pointers. Because of the structuredness of
the spacetree, such a realisation is hardly ele-
gant: memory booking becomes discontinuous,
logically/spatially connected data becomes scat-
tered and the pointers introduce an overhead.
The term ‘becomes’ refers to the evolution of
memory characteristics as the grid changes. Periodical data reordering can, at ad-
ditional cost, eliminate scattering. Other techniques such as storing children of one
cell en block [45, 46] tackle the memory overhead. To avoid the drawbacks com-
pletely, many spacetree codes rely on a total serialisation of the tree. Linearisation
is an alternative term [85]. We emphasise that a serialisation does not constrain
the programming model in any way. Random access still can be allowed. Yet, if
the ‘randomness’ of the data access does not anticipate the data order, the memory
access becomes non-local. As the present papers realise a prescribed processing, the
stream can be ordered according to the traversal order and thus data can be read con-
tinuously which is advantageous on current hardware. Serialisation-based spacetree
codes supporting dynamic adaptivity require careful design. Insertion of new grid
elements as well as deletion have to be available without major data movements.

11



Core statement from [91]: Serialisation with unconstrained dynamic adaptivity
is possible if the tree traversal reads the tree from a serialised input stream
and pipes the grid data afterwards into another stream. The latter can
be used as input data next if the traversal direction is inverted after each
traversal. The input/output streams then are two stacks. Together with
the call stack of the system, three stacks are sufficient to encode the tree
structure.

Tree serialisation without embedded data requires one bit per cell to encode whether
a node of the spacetree is refined or not. A second bit might be used to control the
dynamic refinement. The two bits are often complemented by few further flags
simplifying the programming. All papers discussed here rely on the aforementioned
DaStGen tool [17] which allows us to store all the control bits within one char per
spacetree node. This also holds if the bits encoding the spacetree are augmented by
information about the traversal order.

Depth-first vs. breadth-first. There are various serialisation alternatives, but
the two basic variants are an ordering along a depth-first order (denoted as DFS with
S referring to the relation to classic search algorithms) or a breadth-first order (BFS).
Hybrids are possible. Pros and cons run like a red thread through the subsequent
sections. The main advantage of DFS is that it allows us to use plain recursive
programming and to realise memory modest algorithms with low memory footprint:
there are no large temporary data structures/call stacks involved. We simply read
in a bit stream. BFS instead requires an additional queue or stack besides the call
stack. A serialisation with DFS alone does not yield a spacetree serialisation yet,
as the ordering of the children of one node remains undefined [91, 92]. Once we
define this order, it can be encoded within a pushback automaton. If the same
order pattern is employed on each spacetree level, we end up with the motif of a
space-filling curve (SFC) [3, 77]. Historically, most papers introduce the spacetree
starting from an SFC-based grid traversal, i.e. argue the other way round.

DFS and BFS impose an order on traversal automaton transitions. If we abstract
from DFS and BFS, i.e. try to hide which one is used, we end up with a small set of
constraints that hold for both. As example, a child cell a of a cell b is always visited
the first time after the automaton has ran through b. Such simple observations
motivate a minimal partial order on all events in [92]. It is used in Section 5 and
6 to realise parallel applications: If the application code is written such that it
relies only on this partial order as invariant, and such that it allows for the parallel
invocation of events otherwise, then the traversal automaton may run in parallel.

Space-filling curves. Space-filling curves are a popular tool in scientific comput-
ing [3]. They can be classified at hands of a multitude of properties. Of particular
interest here is the distinction of connected and non-connected curves. The Mor-
ton order/Lebesgue curve is an example for the latter. All implementations here
stick to continuous ones where any two cells visited after each other according to

12



the space-filling curve share a common face. For d = 2, these curves classify all
vertices and faces of a given grid level into vertices/faces left of the curve and
right of the curve. Element-wise traversal codes that implement a deterministic,
connected tree traversal thus can manage the whole grid administration via stacks.

L R

LL

L

R

R

RR R

R

L L

L L L L L L

L

LLL L L

L L

LR

R

R

RR R R

Single-level Sierpinski (top), Hilbert

(middle) and Peano (bottom) curve

cluster all vertices into left and right.

Once they are read in, they can be

temporarily stored on only two stacks.

This scheme breaks down if multi-

scale data is introduced. Additional

stacks are required then and the ac-

cess scheme becomes more complicated.

The vertices and faces are read from an input
stream. This mirrors the reading of the space-
tree description. If they are adjacent to cells
read later on, they are temporarily stored on
left/right temporary stacks. Once they are not
required anymore, they are written to an output
stream.

The scheme is straightforward to understand
for two dimensions and a planar grid without hi-
erarchy. It has been implemented for the Hilbert
curve (k = 2), for the Sierpinski curve with bi-
partitioning on triangles, and the Peano curve
(k = 3) [3]. However, it becomes technically
challenging for d ≥ 3 and breaks down if the grid
holds data on all levels of the grid rather than
only the finest level. Then, the simple idea with
left and right does not work anymore. We have
shown in [91] that, for the Peano curve, one has
to introduce additional stacks to overcome mul-
tiscale problems and to switch from a left/right
classifier to an odd/even classifier along each
Cartesian coordinate axis. This scheme ends up
with 2d+ 2 stacks in total—in contrast to expo-
nential numbers of stacks used by codes before
[50, 55, 73]. While the storage idea with 2d + 2
stacks stems from [91] and has been and is used
by several papers, formal correctness proofs for
all aspects of the grid administration are introduced with [96] first:

Core statement from [96]: With the Peano curve and DFS, a vertex or face
data management can be implemented with 2d + 2 stacks even if vertices
are to be held on each grid level, i.e. if a vertex is unique due to its spatial
position plus its level (cmp. [91]). The proof of this statement results from
a folded induction over spacetree depth and spatial dimension d.

Advantages and disadvantages. Three properties of the Peano space-filling
curve make the induction step work. They are called projection, palindrome and
inversion property. The properties can first be found in [66] with these names.
Only the Peano curve seems to have all three properties for arbitrary d. This is
a common assumption today—see [58] who also sketches what a proof might look

13



like. It also remains doubtful whether a comparably elegant and simple traversal of
a serialised spacetree with a fixed number of stacks or heaps could be realised with
a BFS. A small, fixed number of stacks or heaps is essential to end up with an
algorithm that has advantageous memory access characteristics, i.e. whose memory
accesses exhibit high temporal and spatial locality [65]. Such a scheme is memory
hierarchy- and cache-oblivious.

DFS is the starting point for any algorithm here, while we emphasise that BFS
is a ‘better’ alternative from an HPC point of view as it allows us to employ (loop-
based) parallelism straightforwardly. DFS serialising the spacetree and using stacks
is strictly sequential. Therefore, significant effort is spent in the papers discussed
from hereon to weaken the DFS’ sequentiality without changing its fundamental
memory access characteristics. Besides the DFS’ sequentiality, studies of the results
of [76, 87, 93] and related papers reveal that the stack-based realisation also suffers
from a very high integer arithmetics overhead. All the recursive, localised traversal
routines are elegant from an algorithmic point of view. However, they face the,
typically small, computational (floating point) work per vertex or cell with high
administrative work. Tackling this second challenge is of particular interest in [76]
and [97] where high vectorisation efficiency is an objective. It is also briefly picked
up in [92] where we furthermore give details about typical programming workflows
and development tools we have created to simplfy the work with our spacetree code.

5 Tree decomposition on distributed memory

Serialisation with an SFC renders a plain parallelisation of the traversal impossible.
The traversal’s concurrency level is one. Within a distributed memory environment,
we thus decompose the spacetree and make multiple automata process their own
tree.

Decomposition variants. In [91], we introduce for this purpose a decomposition
of the tree where subtrees are cut out of a global tree and deployed to ranks of
their own. A quick comparison to other papers (cmp. [92]) reveals that there are
basically two competing decompositions with the tree cut decomposition being the
less popular one (though [1] claims that it is the natural choice for multiplicative
multigrid or octrees in general—a statement that can be doubted given the vast
number of approaches following the competing strategy [2, 22, 23, 49, 54, 60, 67,
74, 79, 80, 84, 85]): We can either start from the root and recursively deploy cells
together with all their descendants (children, children of children, . . . ) to other
ranks, i.e. we cut out trees from the global spacetree and deploy these trees to
ranks. Such a top-down approach uniquely assigns each cell on each level within
the spacetree to one selected rank. It defines a non-overlapping cell decomposition
on the finest grid. And it is non-overlapping in terms of the tree. Or we can
decompose the finest grid level into subdomains and deploy these domains to ranks.
A refined cell within the spacetree then is held by a rank if this rank holds at
least one of its children. Such a bottom-up approach starts from a non-overlapping

14



cell decomposition on the finest grid, too, but holds some refined cells redundantly.
Eventually, the root node is held on all ranks. It is overlapping in terms of the tree.
The two approaches are sometimes also classified by the terms horizontal (bottom-
up) and vertical (top-down) splitting with ‘vertical’ referring to the grid levels and
‘horizontal’ naming splits within grid levels or the adaptive fine grid.

Programming model. A programming model for both variants arises naturally:

Top-down splitting cutting out whole
trees from the spacetree recursively.
Each cell on each level is uniquely as-
signed to a rank. The tree splits induce
a tree topology on the ranks. From [92].

For the bottom-up decomposition, the root of
the global spacetree is held redundantly on each
rank. Each rank starts its local spacetree traver-
sal in parallel. For a top-down decomposition,
we basically follow the same approach, though
different automata start on different tree lev-
els, i.e. with different mesh results. Differ-
ences arise once an algorithm requires vertical
data flow, i.e. information transport from fine
to coarse grids or the other way round [92].
Otherwise, both schemes are similar whereas
the bottom-up approach avoids redundant data
storage. The data exchange via boundaries—
typically the vertices and faces along subdomain
boundaries are held redundantly and data is
exchanged ‘through’ these grid entities—is the
same. We detail it in Section 7.

Vertical data flow in the bottom-up approach remains a local operation as each
rank holds all coarser levels. However, we might have to fuse dispersing trees on
coarse levels, i.e. keep the multiple coarse level copies consistent with each other. The
coarser a cell’s level the more ranks hold copies of the cell. That is the underlying
communication graph becomes the denser the coarser the grid level. Vertical data
flow in the top-down approach requires data exchange via message passing if the
flow bypasses a tree cut. Data consistency is ensured by construction since each
cell has a unique ‘owner’. However, as the data flow integrates into the automata
traversal, it is latency-sensitive [97] and partially synchronised: Automata might not
be able to start ‘their’ traversal before the rank responsible for coarser levels has
run through specific cells. Automata might not be able to unroll the recursion stack
before some remote automata responsible for finer trees have finished their traversal.
This observation results directly from the fact that the recursive tree splits induce
a logical tree topology on the MPI ranks with masters and workers. Data flow from
the master to the worker requires that the master’s traversal already has entered
the parent cell of the worker’s local root. For restrictions, i.e. data transfer from
workers to masters, the master’s traversal has to wait for the worker respectively.

We finally emphasise that a bottom-up splitting poses no constraints on fine
grid partitions. A top-down splitting makes all subdomains logically map onto a
whole spacetree. Not every fine grid decomposition is admissible. While experiments
studying small rank counts (see results presented in [91]) have to tackle this problem

15



by MPI overbooking, e.g., studies with bigger rank counts do not report to suffer
from this property. In practice, multiple MPI ranks are ran per node anyway,
and other communication properties hide small load imbalances induced by the
admissibility constraints.

Core statement from [92]: The tree splits (top-down decomposition) avoid
redundant data storage (and computation) as found in classic (SFC-based)
spacetree parallelisation schemes that start from a fine grid decomposition.
This advantage comes at the cost of a tighter traversal coupling and con-
straints on admissible fine grid partitioning.

A parallel execution of particular events is made possible due to the fact that the
programming model imposes solely a partial order. We add that the MPI variant of
the code augments these events by additional events that allow users to plug into
boundary, top-down and bottom-up data transfer via MPI. As each rank runs an
automaton triggering the same set of events, the parallel programming paradigm
thus follows Single Program Multiple Data (SPMD).

Level-wise DFS and rank synchronisation. Our event-based program-
ming model allows us to hide the technical realisation of the tree splits.

Bottom-up decomposition starts from a
fine grid splitting. A coarse cell is as-
signed to a rank if at least one child is
held by this rank. This induces redun-
dant coarse grid storage. From [92].

The latter rely on two ingredients: on a one-
level recursion unrolling and on the partial or-
der imposed on the events. One-level recursion
unrolling is introduced in [91] as level-wise DFS,
and it acts as blueprint for more aggressive un-
rolling as discussed in [31]. In the context of tree
decompositions, it means that all cells and ver-
tices that are direct children of a refined cell are
loaded before the automaton descends into any
of them. Per level, it is a hybrid of depth-first
and breadth-first traversal. refined cell, trigger
remote traversal on the children that induce a re-
mote spacetree, continue with the local subtree,
and to wait afterwards for all remote traversals.
This way, level-wise DFS preserves the partial
orders for vertical data flow as discussed in Sec-
tion 6 and formalised in [92].

Latency-sensitive realisations become problematic on today’s hardware. The
particle studies in [97] show measurements where the hardware’s logical network
tree can directly be identified at hands of scaling graphs. Whenever upscaling of the
problem requires additional nodes connected through an additional switch, the code
faces a sudden performance break-down. The data transfer top-down and bottom-up
per global tree traversal suffers from latency. Motivated from this insight, we state:

16



Core statement from [97]: Partial skips of vertical data exchange asynchronises
the parallel traversal automata. The resulting higher concurrency level
makes the traversals less sensitive to latency effects.

We therefore propose for our code base to offer the opportunity to the application-
specific codes to control the vertical synchronisation between automata with high
granularity.

Core statement from [92]: It is advantageous to grant applications control glob-
ally or on a rank-to-rank base whether data are sent top-down or bottom-up.
This allows the underlying traversals to skip the synchronisation between
ranks and to increase the asynchronity.

6 Recursion unrolling

Recursion unrolling has been introduced in the SFC-automata context in [91] as well
as in the previous section in the context of level-wise DFS. It gains significance in [31]
and [81] where it serves for a different purpose: Recursion unrolling helps to reduce
the traversal’s high integer overhead and allows us to exploit manycore architectures
due to bulk synchronous processing (BSP). It weakens the strict sequentialisation
due to the serialisation, and it speeds up the traversals significantly in grid regions
that represent regular subdomains on one rank.

Analysed tree grammars. We propose to pick up Knuth’s classic definition of
analysed tree grammars [64] and to assign each stationary leaf, i.e. each leaf where
we know that it does not change in the subsequent traversal, the marker 0. All
other leaves obtain a marker ⊥. Throughout the DFS traversal, we analyse the
marker bottom-up when the traversal backtracks, i.e. unrolls the call stack and,
thus, ascends in the tree. Any refined cell is assigned the marker c if all children
have been assigned the marker c− 1. Others get ⊥. We furthermore may invalidate
any marker to ⊥ because of dynamic refinement or coarsening, received MPI data
or dynamic load balancing. We end up with a scheme that identifies subtrees that
yield a regular subgrid and will remain invariant in the subsequent traversal.

If the traversal automaton descends into a refined cell flagged with a marker c,
it knows that this cell induces a full spacetree of depth c. It is thus straightforward
to allocate memory for such a tree temporarily and to permute the steps on it:
the automaton first loads all cells and vertices, it then invokes all the events, and
then stores all data again. Preserving the partial order on events from [92], it is
furthermore natural to resort the events. Most obvious, we may change from a
depth-first order into a breadth-first order. For the latter, we may use concurrent
event calls on every level.

17



Core statement from [31]: An analysed tree grammar tracking invariant reg-
ular subtrees gives us the opportunity to switch within these subtrees to
a concurrent breadth-first ordering following standard colouring schemes.
Formally, such an approach equals recursion unrolling.

While BSP parallelisation is a feature resulting from recursion unrolling that is
reported in [31], another improvement of the approach is the elimination of the
recursion overhead. It yields faster code. This effect is described in [81] where we use
the grammar for further optimisations. Prior to a discussion of these optimisations as
well as the main observations from [81], we return to shared memory parallelisation.

Inter-cell concurrency. In [31], we propose to use 2d colouring on regular sub-
trees: once the whole tree is loaded, run through the levels one by one. This is a BFS.

1

2 2

2 2

3 3

4

4

5

6 6 6 6 6

6 6 6 6 6

6 6 6 6 6

6 6 6 6 6

6 6 6 6 6

7 7 7 7

7 7 7 7

7 7 7 7

7 7 7 7

7 7 7 7

8 8 8 8 8

8 8 8 8 8

8 8 8 8 8

8 8 8 8 8

9 9 9 9

9 9 9 9

9 9 9 9

9 9 9 9

Recursion unrolling for a subtree with
c = 2 loads all three grid levels into
three regular Cartesian grids (tempo-
rary buffers). The depicted cell traver-
sal order results from 2d-colouring.

Within each level, invoke all events concurrently
whose cells do not share data. This is an exten-
sion of red-black Gauss-Seidel colouring for 3d

data dependency stencils on the cells. Follow-
ing data dependency considerations on cells, we
may also introduce colourings with more colours
that automatically ensure that two-level opera-
tors are evaluated on a shared memory environ-
ment without any data races. 3d colouring for
cells or 5d colouring for vertices yield appropriate
orderings for most operations though it depends
on the application’s data access needs. Such
a strategy is used, for example, for geometric-
algebraic multigrid based upon BoxMG in [90].
Following [92], it is advantageous to allow the ap-
plication to define per event which concurrency
level is feasible. Concurrent execution can be
switched off completely—required by plot rou-
tines, e.g.—all cells and vertices can be handled
concurrently, or any colouring can be chosen per
algorithm phase. The user code formulates what
is done within events and prescribes constraints
on these events. How events are invoked in par-
allel on regular subdomains is left to the compu-
tational kernel.

The shared memory parallelisation introduced with the recursion unrolling is
classified in [93] as inter-block concurrency. There, it refers to blocks embedded
into spacetree leaves. Abstracting from a particular application domain, it should
be called inter-cell concurrency. It differs from intra-cell concurrency where kernels
acting on one cell or vertex, respectively, are parallelised internally; a strategy that
has nothing to do with the spacetree. Besides these two paradigms, many functions

18



in our spacetree traversal code base are multithreaded as well. However, the ma-
jor speedup stems from the parallel treatment of cells and application codes that
parallelise activities performed within the cells. The two parallelisation schemes are
technically orthogonal.

k-spacetrees. In the context of patches embedded into cells and the general no-
tion of a k-spacetree, it is important to emphasise that recursion unrolling can be
rewritten as temporary gluing of patches or a temporary increase of k. If a subtree
is unrolled, the unrolling is equivalent to replacing the tree by one coarse grid cell
that hosts a sequence of regular grids. If a subtree is unrolled and if algorithms
focus solely on the finest grid level, the k in k-spacetree is formally changed into
kc+1 and the whole subtree is replaced by a kc+1-spacetree of height one. An alter-
native formulation of a code embedding patches of xd cells into the leaves is to use a
k-spacetree where each refined cell holds a marker from {⊥, x, x+1, x+2, . . .}. This
assumes that x is chosen as multiple of k. These observations are not documented
[31, 91, 93, 97].

Core statement from [93]: The idea of recursion unrolling due to an analysed
tree grammar applies to patch-based formalisms as well and shows how
we may replace assemblies of patches in regular grid subdomains by larger
patches embedded into coarser levels of the spacetree.

7 Partition boundaries and regular subtrees

For the final methodological section, we return to the DFS-SFC combination. Since
this team induces a total order on the whole spacetree, it also induces a total ordering
on any subtree. Since it serialises any subtree, it also defines two orders on all
vertices on the multiscale boundary of its subdomain: one for the first run-through
through any adjacent cell and one for the last possible write by an adjacent cell.
Section 4 relies on a stack-property of the Peano SFC to show that all persistent
data can be held on an input plus and an output stack. As we fall into SPMD for the
MPI programming, each local traversal automaton follows the same SFC direction
per traversal and all automata synchronise their switch of the traversal direction
after each multiscale grid sweep.

Core statement from [81]: Data along partition boundaries can be exchanged
between ranks without any reordering, if all data sent away in one sweep is
received and merged into local data structures in the subsequent traversal.

MPI data exchange. Such a communication pattern resembles the Jacobi un-
known update in linear algebra, as changes to a vertex along the domain boundary

19



are not available to other ranks prior to the subsequent sweep. The ordering simpli-
fies the MPI data exchange since it realises, per communication partner, one plain
stream without any sorting or reordering. The streams can, depending on the hard-
ware characteristics, be buffered locally and submitted in chunks. The idea was
realised in very early Peano-SFC-based implementations [60, 67] and formalised in
[91]. The generalisation to other SFCs can be found in [81]. It is worth a note that
the SFCs’ Hölder continuity yields direct estimates on how big temporary stacks
can grow for regular grids. We footnote that, to the best of our knowledge, a formal
estimate for adaptive grids is not available yet. All estimates on the locality of the
SFCs imply that the data exchanged via MPI is small compared to the volume held
in SFC-induced subsections. Observations on this quasi-optimal surface-to-volume
ratio can be found in [49] for Hilbert indices (the paper also lists related literature),
and we generalise it to the Peano SFC in [20]. Again, we highlight that we do
not only exchange a small number of vertices per rank. We exchange only those
attributes of the application’s data model that are explicitly required. The gener-
ation of the user-defined MPI data types that are required to realise such a subset
exchange is again outsourced to DaStGen [17].

Block memory access. In [81], we distinguish between a ‘shared memory’ de-
composition and a ‘replicating data’ layout for shared memory and distributed en-
vironments. The replicating data decomposition equals the aforementioned tree
decomposition scheme for MPI. Obviously, it also can be ran on shared memory
systems. The shared data decomposition splits the domain into chunks referred to
as clusters [80] but makes vertices on the partition boundaries not stored redun-
dantly. Instead, traversal automata hold meta data to compute where they are
stored. Subject of discussion in [81] is a compression of this meta data along the
SFC order. It is run-length encoding (RLE). In practice, the impact of such a com-
pression on the whole code is limited as the meta data memory footprint is small
compared to the actual data.

The impact of meta data RLE compression—which basically is reduction in
a multiscale sense in [81]—is more significant in terms of runtime for the shared
memory parallelisation once we fuse it with recursion unrolling. Meta data per cell
can encode how many vertices are to be read from the input stream and how many
vertices are written to the output stream due to the particular cell. Obviously,
such data can again be analysed bottom-up along the k-spacetree. It results from
a reduce with an addition operator. Throughout the subsequent traversal, not only
can we pipe all input data into a set of Cartesian grids; we also know through the
meta data how many vertex and cell records have to be read. Statements on the
writes follow analogously.

Core statement from [81]: A bottom-up analysis of how many vertices are
read by cells for the first time or written for the last time allows us to load
continuous chunks of vertices from the input stream for regular subtrees or
to store continuous chunks of vertices respectively.

20



Obviously, reading data in chunks is superior to the step-by-step reads induced by a
recursive traversal implementation. Furthermore, the option arises to split the chunk
to be read into smaller chunks which are read concurrently by multiple threads. If
a regular subtree has to read x vertices, a first thread may read only x̂ < x vertices.
We spawn this thread, shift the pointer along the input stack by x̂ and continue.
This approach allows us to exploit multiple memory controllers due to multiple read
threads within regular grid regions. It is the major runtime improvement reported
in [81] that is made possible by analysed meta data.

8 Results from the case studies

Sections 3 through 7 present new methodologies in the spacetree-SFC context. The
methodologies’ core statements propose answers to the implementation questions
arising from the case studies. In this section, we reiterate which algorithmic ingre-
dients enable the papers to achieve their break-throughs.

A shallow water simulation. The SWE use case embeds patches into the space-
tree. As the spacetree automaton traverses the grid, it runs through the set of
patches and can invoke the kernels operating on these data structures. The space-
tree then acts as organisational data structure on top of the actual compute data.
With the heap provided, we can make each cell/leaf of the spacetree point to its
patch, i.e. its compute data. Furthermore, we can add information to the vertices
which compute data ‘is adjacent’ to each vertex. Since the traversal automaton
entering a cell has access to all its vertices, it consequently also has access to all
neighbour patches and can initialise the ghost cells.

The alternative data storage, i.e. an embedding of the patch data into the data
stream, would be problematic, as the streams then grew large. Since the streams are
always piped from an input into an output stream to facilitate dynamic adaptivity,
holding organisational and compute data separately is advantageous—in particular if
we support local time stepping where not all patches are updated in each traversal
[87]. The impact of DaStGen and other memory footprint reduction techniques
are not dominant in the SWE code. The memory footprint is determined by the
actual patch data together with the halo data. However, we retain excellent cache
behaviour as long as all patches are chosen such that they fit into the caches, as
patches continue to be processed in a localised fashion and ghost data exchange thus
exhibits spatial and temporal memory access characteristics, too.

For a patch-based code whose kernels do not exploit multiscale, all data access is
horizontal data exchange. The SWE solver’s explicit time stepping updates patches
starting from their ‘old’ solution into a new one. A Jacobi-style unknown update—
new solutions are sent after a patch update and received prior to the next update
of neighbouring patches—thus makes latency considerations and vertical data flow
studies irrelevant. We have to expect the code to suffer from limited network band-
width, though MPI parallelisation is not subject of discussion in [93].

21



Four patches are fused into one patch

logically assigned to a coarser space-

tree cell. We eliminate ghost layer ex-

changes, can provide kernels process-

ing regular Cartesian grids with higher

vectorisation efficiency, and apply sim-

ple for-loop parallelisation (intra-cell

concurrency). For d = 2, k =

3, at least nine patches have to be

used. The patch assembly is bro-

ken up if adaptivity criteria require

the kernel to do so. From [93].

Recursion unrolling for shared memory how-
ever is used for the organisational data struc-
ture and allows the code to apply a 2d-colouring
on the patches. Patches of the same colour,
i.e. whose ghost layers do not overlap, then are
updated in parallel. Our results reveal that the
inter-cell concurrency of the spacetree with re-
cursion unrolling and the intra-cell concurrency
introduced by the kernels working on patches
are conceptional orthogonal, but do interfere.
Inter-cell parallelisation pays off if a grid hosts
large regular subdomains. Intra-cell parallelisa-
tion pays off if the work per grid entity is large.
Any application of either scheme changes the
memory access characteristics and the compu-
tational load, i.e. in terms of performance the
two approaches are not orthogonal.

The SWE studies are the prototype of a code
where the analysed tree grammar is used not
only within the tree. We also use it to fuse small
patches in regular regions into one big patch. Efficient stream-like data exchange
along subdomain boundaries again is not important here as the majority of data
to be exchanged is halo/ghost data which consists of regular chunks associated to
the patches anyway. An efficient realisation of load and store operations within the
spacetree plays a minor role as the majority of runtime is spent within the patches,
i.e. the ratio of patch work to traversal work is high. Among the technical details,
it is primarily the interplay of heap-based patch fusion, analysed tree grammars, re-
cursion unrolling and patch fusion that allows us to use the Xeon Phi. Without
the fused patches, we would not be able to exploit the wide vector registers and the
massive core count that is well-suited for in-order parallel-for. Without the dynamic
decomposition of fused patches into their constituents again, we would not be able
to offer unconstrained dynamic adaptivity. We summarise:

1. Patches and arbitrarily dynamical adaptive grids can be brought to-
gether within the spacetree efficiently if cells host the data on the heap and
adjacency information is stored within the vertices.

2./3. We may start with very fine regular patches and on-the-fly fuse assemblies of
these patches into bigger patches. For fused patches, overlaps due to ghost
cells are lower, we can write code that vectorises efficiently, and we can rely
on simple parallel-for parallelism within the patch. All this works without
any constraint on the dynamic adaptivity and without severe constraints
on minimum patch sizes, though constraints make sense from a perfor-
mance point of view. The dynamic fusion furthermore allows us to balance
between good vectorisation properties and reasonable inter-patch
concurrency.

22



While the experiments in [93] reveal that we can obtain excellent throughput, it
remains an open question whether and how one should design corresponding adap-
tivity criteria that push the grid towards regularly tessellated subdomains that can
be fused into high-efficiency coarse scale patches. The idea to realise densified,
highly efficient linear algebra kernels tailored to specific block sizes [59] integrates
seamlessly into the proposed scheme. It closes the performance gap to codes which
rely on specialised kernels for specific grid regions (see for example [43] and ref-
erences therein) but are otherwise block-structured, i.e. do not support arbitrary,
dynamic refinement. While the present application example realises a benchmark
setup, a rather basic numerical scheme and lacks a complex physical model com-
pared to other work referred in this overview [2, 5, 7, 14, 59, 68], it is, to the best
of our knowledge, outstanding in combining unconstrained dynamic adaptivity with
high manycore efficiency. It provides an efficient algorithm due to the spacetree’s
structuredness but preserves all flexibility. No other code in the field (such as AMR-
Claw [25], Flash [30] based upon Chombo or Paramesh, ForestClaw [21], RAMSES
[86], or SeiSol [63]) offers this.

A particle-in-cell code. With heaps, we can associate particles to cells. In
[97], we however propose a Particle-in-Dual-Tree (PiDT) scheme where we associate
particles to vertices. This turns out to be faster and simplify the coding of particle-
grid and particle-particle interaction. The latter is beyond scope in this application.
If particles move from one cell into another, this is realised as reassignment to
another adjacent vertex of the particular cell. If particles move more than one
cell—they tunnel—this is realised by a reassignment to a coarser level. We call this
lift. The lift is followed in the next DFS traversal by a drop into the right grid cell.
The spacetree acts as organisational data structure for the particles while we propose
to realise the PDE solver at hands of the spacetree mesh. Particles contribute with
a Dirac distribution to the PDE’s right-hand side. As they are stored next to their
closest vertex, the evaluation of this right-hand side is straightforward. With the
whole picture, i.e. particle formalism plus PDE solve, the spacetree acts in both
roles: as computational and as organisational data structure.

Tunnelling is the major difference to other particle-based codes. It is enabled
by lifts and drops. They are made possible by to the spacetree’s multiscale nature
which in addition provides us with an AMR grid. The latter is important as the
coupled PDE demands for fine resolution around particle clusters but yields smooth
solutions in the remainder of the domain. Particle-based formalisms depend on the
opportunity to simulate as many particles as possible, and DaStGen’s bit packing
reduces the memory footprint of the particles to an absolute minimum. The memory
footprint of the grid, in contrast, plays a minor role. The stack-based grid access
scheme also makes no major impact, but the DFS-SFC traversal’s locality implies
that the particle resorting, i.e. the reassignment to new vertices either on the same
level or coarser and finer levels, is a localised memory move.

As particles are allowed to travel through the grid arbitrarily fast, each time
step of the simulation comprises a global particle sort. Each rank has to no-
tify each other rank whether particles leave its subdomain. The top-down de-

23



composition of the spacetree fits to this scheme: whenever a particle has to be
lifted, it is lifted solely on one rank or is transferred from one rank to another.

Electric field spectrum in the
wavevector-wavevector plane. From
[97].

We show in [97] that those particles moving
of at most one cell per time step can in con-
trast be realised more efficiently as horizontal
data exchanges through subdomain boundaries.
We benefit from the fact that no data reorder-
ing for boundary data exchange is necessary
due to the SFC. However, we also show that
the code becomes latency-sensitive—a property
that seems to be tight inherently to the global
resort per time step. Our work introduces a
bottom-up analysed velocity check and thus is
able to predict whether particles in a given sub-
domain, i.e. for certain subtrees, may tunnel in
the present time step or not. If they can not
tunnel as they are too slow, the global reduction
within the spacetree is locally switched off. We
call this reduction-avoiding PiDT (raPiDT).

Among the technical details, it is primarily the interplay of heaps, multiscale do-
main representation, SFC-based boundary data exchange of particles and the feature
to switch off worker-master communication between MPI ranks locally that allows us
to make the hard problem of global particle sorting scale. Without the opportunity
to switch off reduction, we run into inverse weak scaling: The more particles enter
the system, the more particles may tunnel and have to be transferred from workers
to masters and the other way round. This makes the global particle re-sort spend
all time in particle exchange. The other algorithmic steps (particle-grid projection,
PDE solve, solver-particle projection) are state-of-the-art challenges in the field. We
summarise:

4. The paper shows that, because of the heap, particles either can be
stored within the containing spacetree cell or can be associated to
the nearest vertex.

5. A storage within the nearest vertex has advantages.The particle associa-
tivity can be updated incrementally and assignment updates along
subdomain boundaries can be realised via particle exchange along
the space-filling curve.

6. While the experiments exhibit excellent scaling for high particle counts and
small MPI rank counts (up to around 1.000), they also reveal that the code
performance starts to decrease if we increase the particle count further or
increase the core count. More time is spent in global all-to-all communication.
These measurements holds for the particle resorting. With other solver steps,
notably the PDE solve, included in timings, we postpone the critical threshold
around 1.000 ranks. However, it continues to exist. The paper introduces an

24



algorithm that predicts where data exchange can be omitted locally as
no particles would be sent anyway. Such a communication-avoiding helps
to improve the scaling.

If tunnelling has to be enabled, we show that we obtain significantly better perfor-
mance than competing SFC-based schemes (in particular other bottom-up decom-
position codes such as [54, 74]) and close the performance gap to standard linked-cell
approaches without tunnelling as they are used in molecular dynamics, e.g. While
the present application realises a benchmark setup, a rather basic numerical scheme
and lacks a complex physical model compared to other related codes relying on
a particle formalism (such as Enzo [33], Gadget and follow-up codes [83], SWIFT
[44]), it is, to the best of our knowledge, outstanding in combining reduction-avoiding
techniques, a multiscale representation/storage of particles and unconstrained par-
ticle velocities. It provides an efficient algorithm due to the spacetree’s multiscale
nature and structuredness.

A multigrid Helmholtz solver. Among the spacetree’s selling points
are its support for arbitrary dynamic adaptivity, in-situ mesh genera-
tion, dimension-generic programming, and the inherently built-in multiscale
representation due to ragged Cartesian grids embedded into each other.

Solution development of the additive
multigrid solver for a Helmholtz prob-
lem. From [76].

These ingredients make it a well-suited base for
p-dimensional geometric multigrid solvers that
realise F-cycles, i.e. unfold the grid on-the-fly.
While the element-wise DFS grid traversal is
well-suited for realise matrix-free stencil oper-
ations, it turns out that the additive schemes’
data flow does not allow us to fuse a solver it-
eration and full approximation storage (FAS):
Coarse grid update’s prolongation makes infor-
mation flow from coarse to fine grids, whereas
FAS’ injection pushes information from the fine
to the coarse grid. FAS is advantageous to realise
dynamic adaptivity with hanging nodes without
complex, adaptivity-dependent stencils. This in-
sight is well-known in the multigrid community
[15, 16]. We show that pipelining with the in-
troduction of additional helper variables on the
grid [38–42] allows us to overcome the data flow
restriction and have a tree traversal code that
realised one additive FAS cycle per tree traver-
sal.

Since we embed all unknowns as well as tem-
porary records such as residuals into the space-
tree stream, the tree acts as computational data structure. DaStGen’s reduction

25



of the memory footprint thus plays a major role—in particular as soon as we run
the simulation on Xeon Phis with their limited main memory. Furthermore, the
grid management with its excellent memory access characteristics allows us to fuse
multiple PDE solves on one grid and compute solutions concurrently. Hereby, we
also evaluate coupling terms Aij immediately and matrix-free if equations i and j
are fused. Recursion unrolling of whole regular subtrees speeds up the code. How-
ever, we rely on an F-cycle, i.e. the solver permanently adds additional grid levels.
This limits the tuning’s impact as regular subtrees have to be broken up with new
vertices entering the grid.

Of particular interest in [76] is the fact that all multigrid implementations
techniques—in particular regarding the pipelining—are proven to be correct. Among
the implementation details, the interplay of DaStGen’s efficient data modelling, the
stacks, the multiscale nature and the dimension-generic formulation of the tree allow
us realise a robust and efficient multigrid code. With weaker memory access charac-
teristics, the fusion of multiple PDEs within one grid would not have led into a code
with high vectorisation efficiency. With only a slightly higher memory footprint, we
would have been limited to even smaller problems on one card. This is critical, as the
problems are in principle p-dimensional with p being the particle count. Currently,
p ∈ {2, 3} are state-of-the-art. We summarise:

7. DaStGen’s data generation supports complex-valued data models and
arithmetics. We thus can use all algorithms straightforwardly in a complex-
valued setting.

8. Pipelining or related techniques that require codes to embed additional
helper data into grid entities do not make the performance dete-
riorate. DaStGen’s C++ augmentation render the modification of the data
model straightforward.

9. If we solve multiple coupled PDEs on one grid and if it is possible to in-
tegrate the equations’ coupling into the solve, i.e. each iteration step
immediately affects the other solves), this increases the arithmetic intensity
superlinearly and allows us to end up with high vectorisation efficiency.

More sophisticated ideas proposing problem-specific intergrid transfer operators
within the spacetree world [90, 98] or stronger smoothers [39, 41, 42] integrate
seamlessly into the proposed scheme. It will close the gap to established multigrid
packages. The idea to realise matrix-free multigrid solvers within a SFC-spacetree
environment is mainstream and old [1, 34, 49–51, 55, 66, 71, 73, 79, 84, 85, 91]—in
particular as the spacetree yields a hierarchical generating system which simpli-
fies the programming [47, 48]. However, the number of complex-valued multigrid
solvers that are available freely is limited, and few codes support grids of arbitrary
spatial dimension. While the present application example realises a benchmark
setup, a rather basic numerical scheme (low-order discretisation and Jacobi-based
smoothers) and also lacks a complex physical model it is, to the best of our knowl-
edge, outstanding in combining unconstrained dynamic adaptivity with pipelining,

26



FAS and matrix-free computations which helps to deliver high arithmetic intensity
at low memory footprint and a robust solver for the Helmholtz problem for arbitrary
dimension. It is able to provide this melange of features due to the spacetree’s
structuredness.

While we would like to add a statement ‘for arbitrary particle counts p, i.e. for
p-dimensional grids’, such a statement would be wrong: while the infrastructure
supports any p, we find the solver’s smoothing properties already deteriorate for
p = 4. Smoother issues are well-known for classic bipartitioning. Peano’s triparti-
tioning makes this challenge harder. Although we obtain constant cost per degree
of freedom, the number of degrees of freedom explodes for large p—the well-known
curse of dimensions—and thus makes solves for large p still unfeasible and demands
for alternative approaches [18].

9 Conclusion

Résumé. There are two options to read the present document: It can be either
read as a collection of algorithmic ingredients useful in the spacetree context, or
it can be read as high-level digest of a software ensemble that integrates the pre-
sented ingredients into one code base. This code base is called Peano [94]. The
name pays tributes to the underlying SFC. Both interpretation variants lead to dif-
ferent conclusions. The ideas also can become of value for any other spacetree-based
coding projects and can help to push other codes forward. They cover the topics
multiscale data modelling with low memory footprint, automaton-based program-
ming paradigms, grid-data associativity, stream-based and memory efficient data
management, flavours of tree decompositions well-suited for distributed memory
environments, recursion unrolling techniques for lightweight shared memory paral-
lelisation, and efficient data exchange between regular subtrees in a grid as well
as distributed subtrees. Furthermore, three contributions to particular application
areas are made. They cover patch-based manycore exploitation, communication-
avoiding particle resorting and FAS-based additive multigrid codes. As a code base,
this code base can be used for rapid prototyping of dynamically adaptive multiscale
solvers running on parallel machines. In the latter case, the unique selling point of
the code base [94] is the integration of many sophisticated ideas while other codes
might be several steps ahead at hands of any particular metric.

Classification of spacetree codes. Numerous spacetree codes do exist. Some of
them claim to be general-purpose, others were written with a particular application
in mind. To give a comprehensive overview of the different software variants is out of
scope for the present text. However, it is possible to use the presented core concepts
to introduce some classifiers differentiating the present work to other approaches.
This scheme is not comprehensive, but it facilitates a comparison.

• Regularity. Adaptive Cartesian grids have to feature hanging nodes. We have
to quantify this adaptivity. Some codes constrain the adaptivity and permit two

27



neighbouring leaves to differ at most one in their level. In accordance with general
meshing terminology, such a constraint yields k-1-irregular meshes or is called
k:1 balancing [79]. We do not enforce such a constraint here though realising it
on top of the present code base is possible. While we thus do not run into the
rippling effect [79], the number of hanging vertex configurations in principle is
not bounded. To avoid the coding of complex, general-purpose code fragments
tackling all possible hanging node configurations and to avoid an embedding
of triangular meshes along resolution boundaries [8]—both approaches increase
the application source code complexity—we propose to use the MLAT idea and
hierarchical generating systems [15, 16, 47, 48] as in [76].

• Dimensions. Most spacetree codes are written for two-dimensional or three-
dimensional settings. Few support both d = 2 and d = 3. As the spacetree
concept is dimension-generic, spacetree codes in principle also can support any
d ≥ 2. However, to the best of our knowledge, only the prototypical software
coming along with [55] provides arbitrary d. The limitations on d regarding the
curse of dimension is highlighted in [76].

• Persistency. Not every application requires the software to hold the space-
tree in memory or out-of-core persistently. It can be sufficient to reconstruct
the spacetree on-the-fly for particular algorithmic phases. Notably for particle-
based formalisms reconstruction seems to be practical [74, 85]. The present work
focuses on a persistent representation of the spacetree in memory.

• Extent. A fundamental design question for any author of a spacetree code is
to decide whether the whole tree is to be stored/administrated or whether it
is sufficient to focus on the finest level of the tree only (cmp. [8, 23]). The
latter mirrors a restriction on Ωh, whereas the whole tree provides a geometric
multiscale hierarchy. Such a code holds all Ωh,` simultaneously [6, 76, 92, 96].
We follow the latter option.

• Role. Spacetrees offer efficient ways to identify adjacency information and mul-
tiscale relations. Connectivity and topology are key ingredients of any mesh ad-
ministration [4, 8, 14, 23, 49, 79, 85] and hence legitimate the use of spacetrees.
However, it is also possible to make the spacetree hold the application-specific
unknowns as well. We can distinguish between two different realisation variants
for the latter that pick up our storage discussion: either the spacetree yields a
direct index to access data stored separately in containers such as hash maps
[49, 87] or the spacetree data comprises application data, too. We propose to
support both variants and to choose for each solver the better-suited one [93, 97].

• Linearised data and data access. It is important for the realisation of al-
gorithms on top of spacetrees whether data—either embedded into a linearised
spacetree or indexed by the spacetree—can be accessed in arbitrary order or
whether the order is fixed. This is a fundamental distinction when we discuss
algorithm realisation variants and methods to couple spacetree codes with ex-
isting solvers. The present papers focus on a deterministic, prescribed traversal
order as well as linearised spacetrees.

• Geometric extension. The present work sticks to a pure spacetree formalism
with an invariant number of children per refined tree node, though we highlight

28



the interplay of the k-partitioning with recursion unrolling. This leads to poor
boundary resolution of O(h). Other approaches relax this constraint and switch
to an unstructured coarse mesh hosting a forest of octrees [23, 43, 84] or introduce
at least anisotropic refinement [45, 46].

Future work. The present overview illustrates that spacetrees have become very
mature. While some features deserve additional attention—notably the differences
between top-down and bottom-up decomposition have to be understood better and
hybrids have to become available— it seems that most improvements in the data
structure context today are evolutionary rather than transformative.

Associated areas of research seem not to be understood completely: in particular,
load balancing for heterogeneous hardware with fluctuating performance as well as
lightweight, resiliency-aware on-the-fly decomposition of data pose timely and urgent
challenges that have to be tackled now with the dawn of the exascale era and the
arrival of manycores. Furthermore, the three chosen use cases show that there is
a vast set of open research questions on the application side. In the hyperbolic
context, local time stepping seems to become the number one challenge with severe
implications for the load balancing. Communication-avoiding and communication-
aware data exchange gain importance due to the deep, heterogeneous communication
topologies. Robust and scaling multigrid ingredients are evergreens of linear algebra.
For other application domains, other challenges may arise.

Though the grid management and administration is mature, one fundamental
challenge remains, in my opinion, completely open: future applications will require
high-dimensional problem solves. The Helmholtz solver [76] here is an example.
Space-time approaches yield further use cases [52, 56, 57, 61, 70, 82, 95]. Yet, in
particular optimisation, calibration and uncertainty setups that rely on adjoint for-
malisms and span the parameter space will require high dimensional grids. Without
a fall back to multishoot/Monte-Carlo methods studying ensembles of simulation
runs, only sparse grids [18] so far promise to overcome some of the problems with
the explosion of unknowns. It will be interesting to see whether classic spacetree
codes can evolve into high-dimensional data structures as well—probably due to an
anticipation of sparse grid or stochastic sampling ideas.

29





References

[1] M. F. Adams, J. Brown, M. Knepley, and R. Samtaney. Segmental refinement:
A multigrid technique for data locality. Technical report, 2015. arXiv:1406.7808
[math.NA].

[2] V. Akcelik, J. Bielak, G. Biros, I. Epanomeritakis, A. Fernandez, O. Ghattas,
E. J. Kim, J. Lopez, D. O’Hallaron, T. Tu, and J. Urbanic. High resolution
forward and inverse earthquake modeling on terascale computers. In Proceedings
of the 2003 ACM/IEEE conference on Supercomputing, SC ’03, pages 52–, New
York, NY, USA, 2003. ACM.

[3] M. Bader. Space-Filling Curves—An Introduction with Applications in Scien-
tific Computing, volume 9 of Texts in Computational Science and Engineering.
Springer-Verlag, 2013.

[4] M. Bader, C. Böck, J. Schwaiger, and C. A. Vigh. Dynamically adaptive simu-
lations with minimal memory requirement - solving the shallow water equations
using sierpinski curves. SIAM Journal of Scientific Computing, 32(1):212–228,
February 2010.

[5] M. Bader, A. Breuer, W. Hölzl, and S. Rettenberger. Vectorization of an aug-
mented riemann solver for the shallow water equations. In Proceedings of the
2014 International Conference on High Performance Computing & Simulation
(HPCS 2014), pages 193–201, 2014.

[6] M. Bader, S. Schraufstetter, C. A. Vigh, and J. Behrens. Memory efficient
adaptive mesh generation and implementation of multigrid algorithms using
sierpinski curves. 4(1):12–21, November 2008.

[7] D.S. Bale, R.J. LeVeque, S. Mitran, and J.A. Rossmanith. A wave propaga-
tion method for conservation laws and balance laws with spatially varying flux
functions. SIAM Journal on Scientific Computing, 24(3):955–978, 2003.

[8] W. Bangerth, C. Burstedde, T. Heister, and M. Kronbichler. Algorithms and
data structures for massively parallel generic adaptive finite element codes.
ACM Trans. Math. Softw., 38(2), 2011.

[9] W. Bangerth, R. Hartmann, and G. Kanschat. deal.II — a general-purpose
object-oriented finite element library. ACM Trans. Math. Softw., 33(4), 2007.

[10] P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn, M. Ohlberger, and
O. Sander. A Generic Grid Interface for Parallel and Adaptive Scientific Com-
puting. Part I: Abstract Framework. Computing, 82(2–3):103–119, 2008.

[11] P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn, M. Ohlberger, and
O. Sander. A Generic Grid Interface for Parallel and Adaptive Scientific Com-
puting. Part II: Implementation and Tests in DUNE. Computing, 82(2–3):121–
138, 2008.



[12] P. Bastian, W. Hackbusch, and G. Wittum. Additive and multiplicative multi-
grid : a comparison. Computing, 60(4):345–364, 1998.

[13] J. Behrens and M. Bader. Efficiency considerations in triangular adaptive mesh
refinement. Philosophical Transactions of the Royal Society A, 367:4577–4589,
October 2009. Theme Issue ’Mesh generation and mesh adaptation for large-
scale Earth-system modelling’.

[14] M. J. Berger and P. Colella. Local adaptive mesh refinement for shock hydro-
dynamics. J. Comput. Phys., 82(1):64–84, May 1989.

[15] A. Brandt. Multi-level adaptive technique (mlat) for fast numerical solution to
boundary value problems. In Proceedings of the Third International Conference
on Numerical Methods in Fluid Mechanics, number 18 in Lecture Notes in
Physics, pages 82–89, 1973.

[16] A. Brandt. Multi-level adaptive solutions to boundary-value problems. Math-
ematics of Computation, 31(138):333–390, 1977.

[17] H.-J. Bungartz, W. Eckhardt, T. Weinzierl, and C. Zenger. A precompiler to re-
duce the memory footprint of multiscale pde solvers in c++. Future Generation
Computer Systems, 26(1):175–182, January 2010.

[18] H.-J. Bungartz and M. Griebel. Sparse grids. Acta Numerica, 13:147–269, 2004.

[19] H.-J. Bungartz, M. Mehl, T. Neckel, and T. Weinzierl. The pde framework
peano applied to fluid dynamics: an efficient implementation of a parallel mul-
tiscale fluid dynamics solver on octree-like adaptive cartesian grids. Computa-
tional Mechanics, 46(1):103–114, June 2010. published online.

[20] H.-J. Bungartz, M. Mehl, and T. Weinzierl. A parallel adaptive Cartesian PDE
solver using space–filling curves. In E. W. Nagel, V. W. Walter, and W. Lehner,
editors, Euro-Par 2006, Parallel Processing, 12th International Euro-Par Con-
ference, volume 4128 of Lecture Notes in Computer Science, pages 1064–1074,
Berlin Heidelberg, 2006. Springer-Verlag.

[21] C. Burstedde and D. Calhoun. Forestclaw—a parallel, adaptive
library for logically cartesian, mapped, multiblock domains, 2015.
http://math.boisestate.edu/ calhoun/ForestClaw.

[22] C. Burstedde, O. Ghattas, M. Gurnis, G. Stadler, E. Tan, T. Tu, L. C. Wilcox,
and S. Zhong. Scalable adaptive mantle convection simulation on petascale
supercomputers. In SC ’08: Proceedings of the 2008 ACM/IEEE conference on
Supercomputing, pages 1–15. IEEE Press, 2008.

[23] C. Burstedde, L. C. Wilcox, and O. Ghattas. p4est: Scalable algorithms for
parallel adaptive mesh refinement on forests of octrees. SIAM Journal on Sci-
entific Computing, 33(3):1103–1133, 2011.



[24] B. A. Cipra. The best of the 20th century: Editors name top 10 algorithms.
SIAM News, 33(4), 2000.

[25] Clawpack Development Team. Amrclaw—part of clawpack-5, 2014.
http://www.clawpack.org/amrclaw.html.

[26] S. Cools, B. Reps, and W. Vanroose. An efficient multigrid calculation of the far
field map for Helmholtz and Schrödinger equations. SIAM Journal on Scientific
Computing, 36:B367–B395, 2014.

[27] J. Davison de St. Germain, J. McCorquodale, S. G. Parker, and C. R. Johnson.
Uintah: a massively parallel problem solving environment. The Ninth Interna-
tional Symposium on High-Performance Distributed Computing, pages 33–41,
2000.

[28] W. Dehnen. A hierarchical o(n) force calculation algorithm. J. Computational
Physics, 179(1):27–42, 2002.

[29] J. Dongarra, J. Hittinger, et al. Applied Mathematics Research for Exascale
Computing, DOE ASCR Exascale Mathematics Working Group, 2014.

[30] A. Dubey et al. The Flash Code, 2015.
http://flash.uchicago.edu/site/flashcode.

[31] W. Eckhardt and T. Weinzierl. A blocking strategy on multicore architectures
for dynamically adaptive pde solvers. In Roman Wyrzykowski, Jack Dongarra,
Konrad Karczewski, and Jerzy Wasniewski, editors, Parallel Processing and
Applied Mathematics, PPAM 2009, volume 6068 of Lecture Notes in Computer
Science, pages 567—-575. Springer-Verlag, 2010.

[32] M. Emmett and M.L. Minion. Toward an efficient parallel in time method
for partial differential equations. Communications in Applied Mathematics and
Computational Science, 7(1):105–132, 2012.

[33] Enzo Developers. enzo—astrophysical adaptive mesh refinement, 2015.
http://enzo-project.org.

[34] A. C. Frank. Organisationsprinzipien zur Integration von geometrischer Mod-
ellierung, numerischer Simulation und Visualisierung. Herbert Utz Verlag,
Dissertation, Institut für Informatik, Technische Universität München, 2000.

[35] E. Gamma, R. Helm, R. E. Johnson, and J. Vlissides. Design Patterns - El-
ements of Reusable Object-Oriented Software. Addison-Wesley Longman, 1st
edition, 1994.

[36] M. Gander and S. Vandewalle. Analysis of the parareal time-parallel time-
integration method. SISC, 29(2):556–578, 2007.

[37] M. Gander and S. Vandewalle. On the Superlinear and Linear Convergence of
the Parareal Algorithm. volume 55 of LNCSE, pages 291–298. 2007.



[38] P. Ghysels, T. Ashby, K. Meerbergen, and W. Vanroose. Hiding global commu-
nication latency in the gmres algorithm on massively parallel machines. SISC,
35(1):C48–C71, 2013.

[39] P. Ghysels, P. Klosiewicz, and W. Vanroose. Improving the arithmetic intensity
of multigrid with the help of polynomial smoothers. Numerical Linear Algebra
with Applications, 19(2):253–267, 2012.

[40] P. Ghysels and W. Vanroose. Hiding global synchronization latency in the
preconditioned conjugate gradient algorithm. Parallel Computing, 2014. (in
press).

[41] P. Ghysels and W. Vanroose. Hiding global synchronization latency in the
preconditioned conjugate gradient algorithm. Parallel Computing, 40(7):224–
238, 2014.

[42] P. Ghysels and W. Vanroose. Modeling the performance of geometric multigrid
on many-core computer architectures. SISC, 2015. (submitted).

[43] B. Gmeiner, H. Köstler, M. Stürmer, and U. Rüde. Parallel multigrid on hier-
archical hybrid grids: a performance study on current high performance com-
puting clusters. Concurrency Computat.: Pract. Exper., 26(1):217–240, 2014.

[44] P. Gonnet, M. Schaller, et al. Swift—fast hybrid (shared/distributed memory)
sph code for astrophysics, 2015. http://icc.dur.ac.uk/swift.

[45] M. Grandin. Data structures and algorithms for high-dimensional structured
adaptive mesh refinement. Advances in Engineering Software, 82:75–86, 2015.

[46] M. Grandin and S. Holmgren. Parallel data structures and algorithms for high-
dimensional structured adaptive mesh refinement. Technical Report 20, Upp-
sala Universitet, 2014.

[47] M. Griebel. Zur Lösung von Finite-Differenzen- und Finite-Element-
Gleichungen mittels der Hiearchischen-Transformations-Mehrgitter-Methode,
volume 342/4/90 A. Dissertation, Technische Universität München, 1990.

[48] M. Griebel. Multilevel algorithms considered as iterative methods on semidefi-
nite systems. SIAM J. Sci. Comput, 15(3):547–565, 1994.

[49] M. Griebel and G. Zumbusch. Parallel Multigrid in an Adaptive PDE Solver
Based on Hashing and Space-filling Curves. Parallel Comput., 25(7):827–843,
July 1999.

[50] F. Günther. Eine cache-optimale Implementierung der Finiten-Elemente-
Methode. Dissertation, published electronically, Institut für Informatik, Tech-
nische Universität München, 2004.



[51] F. Günther, M. Mehl, M. Pögl, and C. Zenger. A cache-aware algorithm for
PDEs on hierarchical data structures based on space-filling curves. SIAM Jour-
nal on Scientific Computing, 28(5):1634–1650, 2006.

[52] S. Güttel and M. Gander. Paraexp: A parallel integrator for linear initial-value
problems. SISC, 35(2):C123–C142, 2013.

[53] W. Hackbusch. Parabolic multi-grid methods. In R. Glowinski and J. L. Lions,
editors, Computing Methods in Applied Sciences and Engineering VI, pages
189–197. North-Holland, 1984.

[54] T. Hamada, T. Narumi, R. Yokota, K. Yasuoka, K. Nitadori, and M. Taiji. 42
tflops hierarchical n-body simulations on gpus with applications in both astro-
physics and turbulence. In Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis, SC ’09, pages 62:1–62:12, New
York, NY, USA, 2009. ACM.

[55] J. Hartmann. Entwicklung eines cache-optimalen Finite-Element-Verfahrens
zur Lösung d-dimensionaler Probleme. PhD thesis, Institut für Informatik,
Technische Universität München, 2004.

[56] T. Haut, T. Baab, P.G. Martinssono, and B. Wingate. A high-order scheme for
soolving wave propagatoin problems via the direct construction of an approx-
imate time-evoluation operatoor. IMA Journal on Numerical Analysis, 2014.
submitted.

[57] T. Haut and B. Wingate. An Asymptotic Parallel-in-time Method for Highly
Oscillatory PDEs. SISC, 2014. (in press).

[58] H. Haverkort, M. Bader, and T. Weinzierl. Space-filling
curves for 3d mesh traversals. Talk at ParCo 2013, 2013.
http://www.win.tue.nl/ hermanh/stack/h-sfc3dmt-talk.pdf.

[59] A. Heinecke, A. Breuer, S. Rettenberger, M. Bader, A.-A. Gabriel, C. Pel-
ties, A. Bode, W. Barth, X.-K. Liao, K. Vaidyanathan, M. Smelyanskiy, and
P. Dubey. Petascale high order dynamic rupture earthquake simulations on het-
erogeneous supercomputers. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis SC14, pages
3–14. IEEE, IEEE, 2014.

[60] W. Herder. Lastverteilung und parallelisierte Erzeugung von Eingabedaten
für ein paralleles cache-optimales Finite-Element-Verfahren. Diploma Thesis,
Institut für Informatik, Technische Universität München, 2005.

[61] G. Horton and S. Vandewalle. A space-time multigrid method for parabolic
partial differential equations. SISC, 16(4):848–864, 1995.



[62] J. Janssen and S. Vandewalle. Multigrid waveform relaxation on spatial finite
element meshes: The discrete-time case. SIAM Journal on Numerical Analysis,
33:456–474, 1993.

[63] M. Käser, C. Pelties, A. Gabriel, et al. Seissol, 2015.
http://seissol.geophysik.uni-muenchen.de.

[64] D. E. Knuth. The genesis of attribute grammars. In P. Deransart and M. Jour-
dan, editors, WAGA: Proceedings of the international conference on Attribute
grammars and their applications, pages 1–12. Springer-Verlag, 1990.

[65] M. Kowarschik and C. Weiß. An Overview of Cache Optimization Tech-
niques and Cache-Aware Numerical Algorithms. In U. Meyer, P. Sanders, and
J. F. Sibeyn, editors, Algorithms for Memory Hierarchies 2002, pages 213–232.
Springer-Verlag, 2003.

[66] A. Krahnke. Adaptive Verfahren höherer Ordnung auf cache-optimalen Daten-
strukturen für dreidimensionale Probleme. Dissertation, published electroni-
cally, Technische Universität München, 2005.

[67] M. Langlotz. Parallelisierung eines Cache-optimalen 3D Finite-Element-
Verfahrens. Diploma Thesis, Fakultät für Informatik, Technische Universität
München, 2004.

[68] R. J. LeVeque, D. L. George, and M. J. Berger. Tsunami modelling with
adaptively refined finite volume methods. Acta Numerica, 20:211–289, 2011.

[69] J.-L. Lions, Y. Maday, and G. Turinici. A parareal in time discretization of
PDE’s. C.R. Acad. Sci. Paris, Serie I, 332:661–668, 2001.

[70] A. Masud and T.J.R. Hughes. A space-time Galerkin/least-squares finite ele-
ment formulation of the Navier-Stokes equations for moving domain problems.
Comput. Methods Appl. Mech. Eng., 146, 1997.

[71] M. Mehl, T. Weinzierl, and C. Zenger. A cache-oblivious self-adaptive full
multigrid method. Numerical Linear Algebra with Applications, 13(2-3):275–
291, 2006.

[72] G. M. Morton. A computer oriented geodetic data base and a new technique
in file sequencing. Technical report, IBM Ltd., Ottawa, Ontario, 1966.

[73] M. Pögl. Entwicklung eines cache-optimalen 3D Finite-Element-Verfahrens für
große Probleme, volume 745 of Fortschritt-Berichte VDI, Informatik Kommu-
nikation 10. VDI Verlag, Dissertation, Technische Universität München, 2004.

[74] A. Rahimian, I. Lashuk, S. Veerapaneni, A. Chandramowlishwaran, D. Malho-
tra, L. Moon, R. Sampath, A. Shringarpure, J. Vetter, R. Vuduc, D. Zorin, and
G. Biros. Petascale direct numerical simulation of blood flow on 200k cores and
heterogeneous architectures. In Proceedings of SC ’10, pages 1–11, 2010.



[75] B. Reps, W. Vanroose, and H. bin Zubair. On the indefinite Helmholtz equa-
tion: Complex stretched absorbing boundary layers, iterative analysis, and
preconditioning. Journal of Computational Physics, 229(22):8384–8405, 2010.

[76] B. Reps and T. Weinzierl. Complex additive geometric multilevel solvers for
helmholtz equations on spacetrees. Journal, Year.

[77] H. Sagan. Space-filling curves. Springer-Verlag, New York, 1994.

[78] H. Samet. The quadtree and related hierarchical data structures. ACM Com-
puting Surveys, 16(2):187–260, 1984.

[79] R. S. Sampath, S. S. Adavani, H. Sundar, I. Lashuk, and G. Biros. Dendro:
Parallel algorithms for multigrid and amr methods on 2:1 balanced octrees. In
Proceedings of the 2008 ACM/IEEE Conference on Supercomputing, SC ’08,
pages 18:1–18:12, Piscataway, NJ, USA, 2008. IEEE Press.

[80] M. Schreiber, T. Weinzierl, and H.-J. Bungartz. Cluster optimization and paral-
lelization of simulations with dynamically adaptive grids. In F. Wolf, B. Mohr,
and D. an Mey, editors, Euro-Par 2013, volume 8097 of Lecture Notes in Com-
puter Science, pages 484–496, Berlin Heidelberg, 2013. Springer-Verlag.

[81] M. Schreiber, T. Weinzierl, and H.-J. Bungartz. Sfc-based communication meta-
data encoding for adaptive mesh. In Michael Bader, editor, Proceedings of the
International Conference on Parallel Computing (ParCo), October 2013. ac-
cepted.

[82] R. Speck, D. Ruprecht, R. Krause, M. Emmett, M. Minion, M. Winkel, and
P. Gibbon. A massively space-time parallel n-body solver. Technical report,
ICS—Institute of Computational Science, Universita della Svizzera italiana,
2012. Supercomputing ’12.

[83] V. Springel et al. Gadget-2—a code for cosmological simulations of structure
formation, 2015. http://wwwmpa.mpa-garching.mpg.de/gadget.

[84] H. Sundar, G. Biros, C. Burstedde, J. Rudi, O. Ghattas, and G. Stadler. Parallel
geometric-algebraic multigrid on unstructured forests of octrees. In Proceedings
of the International Conference on High Performance Computing, Networking,
Storage and Analysis, SC ’12, pages 43:1–43:11, Los Alamitos, CA, USA, 2012.
IEEE Computer Society Press.

[85] H. Sundar, R. S. Sampath, and G. Biros. Bottom-up construction and 2:1 bal-
ance refinement of linear octrees in parallel. SIAM J. Sci. Comput., 30(5):2675–
2708, August 2008.

[86] R. Teyssier. Ramses, 2015. http://www.itp.uzh.ch/ teyssier/ramses/RAMSES.html.



[87] K. Unterweger, T. Weinzierl, D. Ketcheson, and A. Ahmadia. Peanoclaw - a
functionally-decomposed approach to adaptive mesh refinement with local time
stepping for hyperbolic conservation law solvers. Technical report, Institut für
Informatik, Technische Universität München, June 2013.

[88] W. Vanroose, F. Martin, T. N. Rescigno, and C. W. McCurdy. Complete photo-
induced breakup of the H2 molecule as a probe of molecular electron correlation.
Science, 310:1787–1789, 2005.

[89] M. S. Warren and J. K. Salmon. A portable parallel particle program. Computer
Physics Communications, 87:266–290, 1995.

[90] M. Weinzierl. Hybrid Geometric-Algebraic Matrix-Free Multigrid on Space-
trees. Dissertation, Fakultät für Informatik, Technische Universität München,
München, 2013.

[91] T. Weinzierl. A Framework for Parallel PDE Solvers on Multiscale Adaptive
Cartesian Grids. Verlag Dr. Hut, München, 2009.

[92] T. Weinzierl. The Peano software—parallel, automaton-based, dynamically
adaptive grid traversals. Technical Report 2015arXiv150604496W, Durham
University, 2015.

[93] T. Weinzierl, M. Bader, K. Unterweger, and R. Wittmann. Block fusion on dy-
namically adaptive spacetree grids for shallow water waves. Parallel Processing
Letters, 24(3):1441006, September 2014.

[94] T. Weinzierl et al. Peano—a Framework for PDE Solvers on Spacetree Grids,
2015. www.peano-framework.org.

[95] T. Weinzierl and T. Köppl. A geometric space-time multigrid algorithm for the
heat equation. Numer. Math. Theor. Meth. Appl., 5(1):110–130, 2012.

[96] T. Weinzierl and M. Mehl. Peano – A Traversal and Storage Scheme for Octree-
Like Adaptive Cartesian Multiscale Grids. SIAM Journal on Scientific Com-
puting, 33(5):2732–2760, October 2011.

[97] T. Weinzierl, B. Verleye, P. Henri, and D. Roose. Two particle in tree realisa-
tions. Parallel Programming, xxx(x):xxx, 2015.

[98] I. Yavneh and M. Weinzierl. Nonsymmetric black box multigrid with coarsening
by three. Numerical Linear Algebra with Applications, 19(2):246–262, 2012.


